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Abstract

We study information aggregation with a biased election organizer

who recruits voters at some cost. Voters are symmetric ex-ante and

prefer policy a in state A and policy b in state B, but the organizer

prefers policy a regardless of the state. Each recruited voter observes a

private signal that is imperfectly informative about the unknown state,

but does not learn the size of the electorate. In contrast to existing

results for large elections, there are equilibria in which information ag-

gregation fails: As the voter recruitment cost disappears, a perfectly

informed organizer can ensure that policy a is implemented indepen-

dent of the state by appropriately choosing the number of recruited

voters in each state.
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1 Introduction

Voting is considered to be an effective mechanism for aggregating information

that is dispersed among voters about which of the available policies or can-

didates is better for the society. Indeed, Feddersen and Pesendorfer (1997)

showed that in large elections, the majority decision will often be as if there

was no uncertainty. Hence, simple majority rules not only allow voters to ex-

press their preferences, but also allow the society to better aggregate dispersed

information, provided that the electorate is sufficiently large.

Elections, however, take place in larger contexts in which interested parties

try to influence election outcomes. For instance, one often sees interested

parties spend resources to affect voter turnout. Examples of such activities

include the bussing of voters to polls in elections or in referenda, the activities

of a CEO directed at increasing participation in shareholder voting, or the

prodding of colleagues by a department chair. Hence, it is natural to ask

the extent to which an election organizer’s ability to manipulate the voter

participation rate might allow him to influence the outcomes of elections.

To this end, we analyze a model in which voters have to decide between

two policies: policy a and policy b. Voters prefer policy a in state A and policy

b in state B ; i.e., voters prefer that the implemented policy matches the state

of the world. However, no individual voter knows the state, and hence voters

are uncertain about the correct policy. Although uncertain about the state,

each voter has a small piece of information in the form of a noisy signal.

The key element in our model is that the number of voters is chosen by

an election organizer who privately observes the realization of the state of

the world and recruits an odd number of voters after observing the state.

Recruitment is a costly activity, and the total recruitment cost is increasing in

the number of recruited voters. Each voter then has an equal chance of being

selected to participate in the election. The election organizer is biased —has

a conflict of interest with respect to the voters— in the sense that he always

prefers that policy a be implemented independently of the state. We assume

that the number of recruited voters is not observed by the voters. However,

the voters will make Bayesian inferences about the state from being recruited,

since the organizer may choose different participation rates in different states.



Therefore, a voter receives some information about the state from the fact that

he is selected.

To fix ideas, consider a referendum to build a bridge in a town. The cost of

the bridge is unknown, and the voters prefer that the bridge be built only if the

cost of building the bridge is low. The governor knows the cost and chooses how

much resource to spend in order to mobilize the voters, which in turn affects

voter turnout. The governor prefers the bridge to be built no matter what the

cost is, may be because it will increase his popularity, and hence his re-election

chances in the next election, or because he will benefit from doing business

with the construction company in charge of building the bridge. Our paper

then explores how much the ability to influence voter turnout can translate

into the ability to influence the policy outcome.

We show in our main result that the ability to manipulate turnout signifi-

cantly affects the performance of elections. There are equilibria in which the

majority chooses policy a almost always, independently of the state, when the

recruitment cost is almost zero, and when the potential number of voters is

arbitrarily large.

Our result has implications for the electorate’s ability to make correct

choices, i.e., the extent to which elections aggregate information. Elections

fully aggregate information if the correct policy is chosen with probability

one, and elections aggregate no information if the same policy is chosen in

both states. Our main result implies that the presence of the biased organizer

reduces information aggregation. When the recruitment costs are small and

the electorate is large, there are symmetric equilibria in which the selected

outcome is independent of the state of the world; thus information aggregation

completely fails. Moreover, in such equilibria the organizer’s favorite policy is

implemented with a probability that approaches one in the limit; hence, the

organizer ensures that information aggregation fails in the most drastic way

that is favorable for him. This result is in stark contrast to earlier papers on

voting and information aggregation. For example, Feddersen and Pesendorfer

(1997) showed that in a large electorate without an organizer, the outcome of

the election coincides with the outcome of a voting model without uncertainty.

Driving this negative result is a recruitment effect. The intensity of the

organizer’s recruitment activity depends on his private information. This in-
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troduces an endogenous relationship between the number of voters and the

state. In particular, the number of participating voters is state dependent. A

voter’s vote affects the outcome of the election only when there is a tie in the

number of votes cast in favor of each alternative, i.e., when the vote is pivotal.

Therefore, a voter votes as if his vote is pivotal. All else equal, a voter is more

likely to be pivotal in the state where participation is lower, i.e., the state

in which the organizer recruits fewer voters. The organizer manipulates the

outcome of the election via recruiting more voters in state B and fewer voters

in state A. This strategy works, because a voter believes that when his vote

is pivotal, state A is more likely to be the realized state and hence votes for

policy A with a probability larger than one half.

In our second set of results (Theorems 2 and 3), we characterize the equi-

librium behavior across all equilibria when the recruitment costs are small

and when the population is large. First and foremost, there is no equilibrium

that fully aggregates information. Moreover, apart from equilibria in which

the organizer recruits no additional voters1—we assume that there is always

one voter present independent of the organizer’s recruitment activity to avoid

off-equilibrium problems with zero voters—there is only one limit equilibrium

outcome with a different outcome. In this type of equilibrium, the expected

vote shares in state A for each policy approach a half, and hence there is a

close race in state A. The election outcome in state A is deterministic — policy

a is implemented with probability approaching one—if the number of voters

grows without bound and is not deterministic otherwise. In state B, the orga-

nizer recruits no additional voters, and hence, the implemented policy is not

deterministic in state B.

In the final part of our analysis, we tackle an election design question and

show via two examples how the extent of manipulation can be diminished us-

ing policy tools. Theorem 4 presents our results when there is a participation

requirement, i.e., when there is a requirement that the number of voters par-

ticipating be above a certain threshold. Since we are interested in the limit

outcomes of large elections, we analyze equilibria of a sequence of elections in

which the required threshold weakly increases as well as the organizer’s recruit-

1Such an equilibrium exists for some parameters, and does not exist if the number of
voters present independent of the organizer’s recruitment activity is sufficiently large.
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ment cost disappears. If the required threshold increases without bound, then

there is always an equilibrium sequence that aggregates information. More-

over, if the threshold increases sufficiently fast relative to the rate at which the

recruitment cost disappears, then all symmetric equilibria aggregate informa-

tion. However, if the threshold increases at a rate that is too slow relative to

the rate at which the recruitment cost disappears, then a limit outcome exists

in which the organizer ensures that policy a is implemented.

Another election design tool that we examine is the use of unanimity rule

for policy a to be implemented. If the minimum number of voters who partic-

ipate grows without bound, then the symmetric equilibrium outcomes do not

fully aggregate information. However, the outcome is very different from the

outcome of manipulated equilibria, and the amount of inefficiency that comes

from the failure of information aggregation is smaller if the highest signal is

more precise. Therefore, when the information content of the highest signal

is sufficiently precise, then the worst equilibrium outcome of elections with

unanimity rule is better for voter welfare than the worst equilibrium outcomes

of elections with majority rules. This result stands in contrast to Feddersen

and Pesendorfer (1998), who showed that unanimity rules are the only voting

rules among all supermajority rules that fail to aggregate information in large

elections.

2 Model

A finite number of potential voters, N , has to choose between two available

policies, {a, b}. The voters have common interests but are uncertain which

policy serves their interest better. In particular, there are two possible states

of the world, denoted by ω ∈ Ω := {A,B}. Voters share the following utility

function:

u(a,A) = u(b, B) = 1,

u(a,B) = u(b, A) = −1,

where u(x, ω) denotes the utility if policy x is chosen in state ω. In other

words, voters prefer the implemented policy to match the true state of the

4



world, but they do not know what the state is.2

Information Structure:

There is a common prior belief π ∈ (0, 1) that the state is A. Each voter

receives a private signal, s ∈ S := [0, 1]. The signals are distributed according

to a c.d.f. F (s|ω). Conditional on the state, the signals are independent across

voters. The distribution F admits a continuous density function, denoted by

f(s|ω). We assume a strict version of the Monotone Likelihood Ratio Property

(MLRP).3

Assumption 1.

f (s|A)

f (s|B)
is strictly decreasing in s.

Assumption 1 implies that voters who receive higher signals attach a strictly

larger probability to the state of the world being state B. Another implication

of Assumption 1 is that signals carry some information about the state of

the world; i.e., f(s|A) is not identical to f(s|B) for all s ∈ S. Our second

assumption puts a bound on the informativeness of the signals.

Assumption 2. There exists a number η > 0 such that

η < f (s|ω) <
1

η
for ω ∈ Ω and for s ∈ S.

An implication of Assumption 2 is that there is no single voter type who

has arbitrarily precise information about the state of the world.

Organizer’s Actions and Preferences:

There is a single election organizer who observes the realization of the state

of the world ω and recruits a number of voters who will participate in the

election. He prefers that policy a be implemented irrespective of the state of

the world. Recruitment is costly, and in particular, recruiting each additional

2Note that here we also make the simplifying assumption that u(a,A) − u(b, A) =
u(b, B)− u(a,B), but none of our results depends on this specification.

3Continuity of the densities f(·|ω) and the strict version version of MLRP are for ex-
positional simplicity. All of our results continue to hold without continuity of the density
functions and also with the weak version of MLRP, together with a condition that states
that “f(s|A) is not everywhere identical to f(s|B).”

5



pair of voters costs c > 0 to the organizer. So, if the organizer recruits n pairs

of voters, then the number of participants in the electorate is equal to

2n+ 1 ∈ {1, 3, 5..., N} .

If the organizer recruits no one, n = 0, then a randomly chosen voter becomes

the unique voter. The number of voters is always odd and therefore a “tie” in

the vote count cannot occur.

The payoff of the organizer is:

uO(a, n) = 1− cn,
uO(b, n) = −cn,

where the first argument is the policy that the majority of the electorate

chooses to implement, and the second argument is the number of pairs of

voters the organizer recruits.

We make the following assumption on the relation of c and the size of the

potential voters, N .4

Assumption 3.

N ≥
⌊

2

c

⌋
.

This assumption ensures that the size of the population is never a binding

constraint for the organizer.5

Timing of the Voting Game:

Summarizing our description, the timing is as follows.

• The organizer learns the state.

• The organizer chooses n.

• Nature chooses (recruits) 2n + 1 voters, each equally likely, from the

population.

4The term bxc refers to the largest integer not greater than x.
5Note that the assumption is a lower bound on the size of the population. Our analysis

remains unchanged when the number of voters is infinite, in which case we could dispense
this assumption. The advantage of a finite population is that being recruited is a positive
probability event, which facilitates the application of Bayes’ formula.
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• Each recruited voter observes his private signal but does not observe the

number of recruited voters, n.

• Only the recruited voters participate in the election and each recruited

voter votes for policy a or policy b.

• The policy that receives more votes is implemented.

Strategies and Equilibrium:

A strategy for the organizer is a pair of distributions over integers,

ñ = (ñA, ñB) ∈ ∆({0, 1, ..., (N − 1)/2})2,

which denotes the recruitment choice of the organizer in states A and B, re-

spectively.

A pure strategy6 for voter i is a mapping

d : S → {a, b},

that prescribes how the voter will vote as a function of his signal, conditional

on being recruited. When a voter is not recruited, he does not have a ballot

to cast.

A symmetric Nash equilibrium is a tuple (ñ, d) in which the organizer’s

strategy ñ is a best response to a voter strategy profile in which each voter

uses the same strategy d, and the strategy d is a best response to the strategy

profile in which the organizer’s strategy is ñ and all other voters are using the

strategy d. From here on, equilibrium refers to symmetric Nash equilibrium.

For any given symmetric voter strategy d, let the expected vote share for

policy a in state ω be:

qω(d) := Pr (d (s) = a|ω) =

∫
s∈[0,1]

1d(s)=af (s|ω) ds.

Inference of Voters and Cutoff Strategies:

6As will become clear, voters’ best replies will have a cutoff structure, and therefore,
focusing on pure strategies for the voters is without loss of generality.
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In our model voters are consequential; i.e., they care only about the im-

plemented policy and not directly about how they vote. In other words, a

single vote will make an impact on the outcome of the election only when the

number of votes cast for either alternative without that single vote is exactly

equal, i.e., when that vote is pivotal. More precisely, a voter votes as if his

vote is pivotal, as is typical in voting models with incomplete information.

The probability of being pivotal in state ω if the expected vote is qω and the

number of recruited voters is nω, is given by(
2nω
nω

)
(qω)nω(1− qω)nω .

In our model, there is an additional source of information that the voters

use in their inference about the state of the world, because there is some

information carried in the event that a voter is recruited. This is because the

number of recruited voters depends on the state of the world, and hence, a voter

learns some information about the state of the world from being recruited. The

probability of being recruited in state ω if the number of recruited voter pairs

is nω, is given by
2nω + 1

N
.

The posterior likelihood ratio that the state is A, conditional on being

recruited and conditional on being pivotal for a voter who received signal s,

when all other voters are using the strategy d, and the organizer is using a

pure strategy ñ = (nA, nB) is calculated as below:7

β(s, piv, rec; ñ, d) :=
π

1− π︸ ︷︷ ︸
prior

f(s|A)

f(s|B)︸ ︷︷ ︸
signal

2nA+1
N

2nB+1
N︸ ︷︷ ︸

recruited

(
2nA

nA

)
(qA)nA(1− qA)nA(

2nB

nB

)
(qB)nB(1− qB)nB︸ ︷︷ ︸

pivotal

, (1)

where we omit the dependence of qω on the voter strategy d for ease of reading.

This likelihood ratio, which we refer to as the critical likelihood ratio, guides

7Note that the extension of the expression to the case in which the organizer is using a
mixed strategy is rather straightforward, and we skip it in order to highlight the recruitment
effect and the pivotal effect in the displayed expression. For completeness, we write the
critical likelihood ratio when ñ is a mixed strategy in Equation (7), which is in the Appendix.
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a voter’s voting decision. In particular, a voter with a signal s votes for policy

a if his critical likelihood ratio is above 1, and he votes for policy b otherwise.

Therefore, voters use cutoff strategies in all equilibria. This is a standard result

in voting models and follows from the MLRP condition from Assumption 1.

Lemma 1. Any equilibrium voting strategy has a cutoff structure. There is a

signal ŝ such that a recruited voter casts a vote for policy b if s > ŝ and for

policy a if s < ŝ.

From here on we will use ŝ ∈ S to denote a generic cutoff strategy and

qω(ŝ) to denote the expected vote share for policy a in state ω when voters use

a cutoff strategy ŝ. Lemma 1 allows us to conveniently express the expected

vote share for policy a as:

qω (ŝ) = F (ŝ|ω) .

In an equilibrium with an interior cutoff—0 < s∗ < 1—the cutoff type is

indifferent between voting for either option, so

β(s∗, piv, rec; ñ, s∗) = 1.

Remark 1. The critical likelihood ratio is found by using the information in

the voter’s prior belief, in his signal, conditioning on the events that he is re-

cruited, and that his vote is pivotal. The recruitment strategy enters in two

places. Holding everything else constant, if the number of recruited voters in

state ω increases, then the recruitment effect will push the critical likelihood

ratio of the voter toward state ω. However (unless the outcome is determin-

istic), the pivotality probability in state ω decreases if the number of recruited

voters in state ω increases.

Organizer’s Best Reply:

The organizer chooses n in order to maximize the probability with which

policy a is implemented less recruitment cost. Recall that the voters do not

observe the choice n of the organizer, and hence the organizer’s choice does

not affect voter behavior directly. Therefore, in state ω the organizer’s (pure)

best reply correspondence to a given cutoff strategy ŝ of the voters is:
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arg max
n∈{0,1,..., 12 (N−1)}

2n+1∑
i=n+1

(
2n+ 1

i

)
(qω (ŝ))i (1− qω (ŝ))2n+1−i − nc. (2)

The first term in the objective function of the organizer is the probability

that policy a is implemented when the probability that a randomly selected

voter votes for policy a is qω(ŝ), and when the size of participation is 2n + 1.

The second term is the cost of choosing a participation size of 2n+ 1.

Remark 2. The number of potential voters, N , appears in the recruitment

effect in Equation (1) and in the organizer’s best reply in Equation (2). How-

ever, the term N cancels out in the recruitment effect. Hence, N has an impact

on equilibrium behavior only if it is sufficiently small that it becomes a binding

constraint in the organizer’s best reply in Equation (2), which we rule out by

Assumption 3. Therefore, N plays no further role in the analysis.

To get more insight into the organizer’s best reply, we calculate the increase

in the probability that policy a gets selected when the organizer recruits an

additional pair of voters, that is, the marginal benefit of increasing n:

∆ (n− 1, ω, ŝ) :=
2n+1∑
i=n+1

(
2n+ 1

i

)
(qω (ŝ))i (1− qω (ŝ))2n+1−i

−
2n−1∑
i=n

(
2n− 1

i

)
(qω (ŝ))i (1− qω (ŝ))2n−1−i .

This expression can be rewritten as:8

∆ (n− 1, ω, ŝ) =
1

2

(
2n

n

)
(qω)n (1− qω)n (2qω − 1) .

8Adding an additional pair of voters when there are initially 2n − 1 voters changes the
outcome only if either exactly n − 1 voters already support a, and both of the additional
voters happen to vote for a, or exactly n voters already support a, and neither of the
additional voters vote for a. Hence:

∆ (n− 1, ω, ŝ) =

(
2n− 1

n− 1

)
(q)

n−1
(1− q)

n
(q)

2 −
(

2n− 1

n

)
(q)

n
(1− q)

n−1
(1− q)

2

=
1

2

(
2n

n

)
(q)

n
(1− q)

n
(q − (1− q))
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The increase in the probability that policy a is implemented when the size

of the recruited voters increases from 2n−1 to 2n+1 is equal to the probability

of a tie in the vote counts for policies a and b, multiplied by the term 1
2
(2q−1).

If qω(ŝ) ≤ 1/2, then ∆ (n− 1, ω, ŝ) ≤ 0 for every n; so the organizer

recruits no additional voter, since recruitment is costly. Indeed, when the

odds are against him, the organizer recruits as few people as possible in order

to maximize the variance of the outcome of the election and also to save on

recruitment costs.

On the other side, if qω(ŝ) > 1/2, then ∆ (n− 1, ω, ŝ) > 0 and ∆ (n− 1, ω, ŝ) >

∆ (n, ω, ŝ). Therefore, the objective function is strictly concave. An im-

plication of this is that if qω(ŝ) > 1/2, then there is a unique n such that

∆ (n− 1, ω, ŝ) ≥ c and ∆ (n, ω, ŝ) < c. Notice that when q > 1/2, the odds

are with the organizer, so he wants to minimize the variance of the election

outcome by recruiting many people. For instance, if the organizer recruited

an infinite number of voters, then by the law of large numbers, policy a would

be implemented. However, there is a cost of recruiting voters, so the orga-

nizer recruits as many voters as possible until he reaches a point at which the

marginal benefit of recruiting an additional pair of voters is not more than the

marginal cost.

Therefore, in both cases the organizer’s best reply will either be unique

(meaning one integer for each state), or it will be a mixed strategy in which

the support consists of two adjacent integers, for one or both of the states.

3 Manipulated Electorates

We study election outcomes when c is small. When c is small, the organizer

may recruit many voters and so we can compare our result to those for ex-

ogenously large elections. To this end, we fix the common prior π and some

information structure F that satisfies Assumptions 1 and 2. Let {G(c)}c>0 be

a collection of voting games in which for each game G(c), the prior belief is π,

the information structure is F , the recruitment cost to the organizer is c, and

the number of potential voters, N(c), is some integer that satisfies Assumption

3.
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Theorem 1. Let {ck}k=1,2,... be a sequence of positive numbers that converge

to zero. Then, there is a sequence of symmetric Nash equilibria of G(ck) such

that in both states:

1. The probability that policy a is implemented converges to one.

2. The number of recruited voters grows without bound.

3. The organizer’s payoff converges to one.

Theorem 1 states that as the recruitment cost disappears and the num-

ber of potential voters becomes large, there are equilibria in which policy a is

elected with a probability that is arbitrarily close to one in both states. There-

fore, information aggregation fails in the most drastic way that is beneficial

to the organizer. In other words, in such equilibria the organizer’s favorite

outcome is implemented regardless of the state. Moreover, in both states, the

number of recruited voters becomes large and the organizer’s expected payoff

becomes one. Hence, an endogenously large electorate may lead to the failure

of information aggregation, and in the limit, the organizer incurs no cost from

the recruitment efforts despite recruiting an unbounded number of voters.

In such manipulated equilibria, a randomly selected voter votes for policy a

with a probability strictly larger than 1/2 in both states of the world. Therefore,

when the recruitment cost is small, the organizer can ensure that the majority

selects policy a by recruiting many voters.

The aggressive voter behavior in favor of policy a is a consequence of the

asymmetry in the number of voters who are recruited in state A and state B.

In such equilibria, the organizer recruits more voters in state B than in state

A. Such asymmetry in the numbers of voters in different states affects voter

behavior in two ways. First, because there are more voters in state B than

in state A, a voter is more likely to be recruited in state B, and his posterior

belief that the state is B goes up when he is recruited. This is the recruitment

effect. The other effect that works in the opposite direction is the pivotality

effect. Because there are more voters in state B than in state A, the pivotal

probability in state A is larger than the pivotal probability in state B. Among

the two effects, the pivotality effect is the more dominant one, and the overall

net effect leads to the voting behavior in favor of policy a.

12



We now turn to the organizer’s incentives. To provide some insights, we

want to argue that whenever voters are using a cutoff s∗ such that qA(s∗) >

qB(s∗) > 1/2, then it will be the case that the organizer recruits more voters

in state B than in state A, when the recruitment cost is small. To see why,

recall that the marginal benefit of recruiting one more voter is:

∆(n− 1, ω, s∗) =

(
2n

n

)
qω(s∗)n(1− qω(s∗))n︸ ︷︷ ︸
pivot probability

1

2
(2qω(s∗)− 1).

The first term reflects how likely it is that an additional voter changes the

outcome. The second term reflects how likely it is that an additional voter

swings the election in the organizer’s favor (rather than against). Comparing

the relative magnitude of the two terms in the two states shows that they go

in opposite directions,

qA(s∗)(1− qA(s∗)) < qB(s∗)(1− qB(s∗)), whereas

2qA(s∗)− 1 > 2qB(s∗)− 1.

In general, the relative marginal benefits of additional voters in the two

states will depend on both terms. However, for sufficiently large n, the first

term unambiguously dominates the second. Because the organizer recruits a

growing number of voters when the recruitment cost is small,

∆(n∗ − 1, A, s∗) < ∆(n∗ − 1, B, s∗),

for every integer n∗ pair of voters he recruits in state A. Because the marginal

benefit ∆(n, ω, s) is decreasing in n, it follows that the organizer recruits

strictly more voters in state B than in state A. Figure 1 depicts how the

probability that the majority selects policy a changes with n for qA and qB.

When n is large, then the curve given qB is steeper than the curve given qA,

that is, the marginal benefit of an additional voter is larger in state B.

In order to prove the first part of the theorem, we show that there is an

equilibrium sequence in which the probability that a randomly selected voter

votes for policy a stays bounded above from a half in each state of the world.
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The probability that policy 0 receives a majority of votes given the number of
recruited voters n for q = 0.6 (straight) and for q = 0.7 (dashed).

1

Figure 1: The probability that policy a receives a majority of votes given the
number of recruited voters n for q = 0.6 (straight) and for q = 0.7 (dashed).

Define the “median-signal” in state ω as

sω := qω(sω) = 1/2.

The main step is to prove that equilibrium cut points converge to a signal

s∗ > sB. To see why this suffices to prove the theorem, first observe that

because s∗ > sB, qω(s∗) > 1/2 for each ω ∈ {A,B}. This is because the

expected vote share for policy a is increasing in the voters’ cut point, and

because the expected vote share in state B is weakly higher than that in state

A. If the limit cut point s∗ = 1, then the voters ignore their signals and vote

for policy a almost independent of their signals, resulting in policy a being

implemented for sure. If s∗ < 1, then as c disappears, the organizer recruits

an arbitrarily large number of voters in both states.

There may be multiple equilibrium sequences, with different limit cutoffs

s∗, and with different organizer behavior. However, provided that the limit

cutoff s∗ > sB, the policy that is implemented becomes deterministic and is

independent of the state. Moreover, there is at least one equilibrium sequence

along which the number of recruited voters grows without bound in both states.

As we show in Lemma 7, located in the Appendix, and in the subsequent
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remark, the ratio of the number of recruited voters in states A and B stays

bounded away from zero and infinity.

Contrast with Voting Models with State Independent Number of Voters:

The existence of equilibria with a limit cut point s∗ > sB stands in sharp

contrast to the results of Federsen and Pesendorfer (1997), who showed that in

a voting model where the number of voters is state independent, all symmetric

equilibrium cut points have limit points s∗ ∈ (sA, sB).9 This then implies that

all equilibria aggregate information. What drives Feddersen and Pesendorfers’

result is that otherwise, for any s∗ that is not in the interval (sA, sB), the ratio

of pivot probabilities is degenerate in the limit. Note that the ratio of pivot

probabilities is

lim
n→∞

(
2n
n

)
(qA(s∗))n(1− qA(s∗))n(

2n
n

)
(qB(s∗))n(1− qB(s∗))n

. (3)

This expression goes to 0 if s∗ > sB and to ∞ if s∗ < sA. Therefore, the

critical likelihood ratio cannot be one and there cannot be an equilibrium with

a limit cut point s∗ /∈ (sA, sB).

In our model, the information contained in the pivotal event is shaped

by both the expected vote shares in both states and the relative ratio of the

number of participants in each state. This is because an equal split is less

likely in the state with a larger number of participants. Indeed, the organizer’s

decision about how many voters to recruit is linked to the expected vote shares

in a way that keeps the inference made by being pivotal relatively moderate,

compared to the case in which the number of voters is exogenous. Hence, the

existence of the organizer opens up the possibility that the majority votes for

policy a.

The key to the result that s∗ > sB can be a limit cut point is through the

organizer’s recruitment strategy and its interaction with the pivotal probabil-

ities in different states. For a given probability q > 1/2, which represents the

probability that a randomly selected voter votes for policy a, the organizer

chooses the number of recruited voters, 2n+ 1, such that:

9They consider a setting with both private and common values. Large elections with
pure common values are analyzed in Feddersen and Pesendorfer (1998) and Duggan and
Martinelli (2001)
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(
2n

n

)
qn(1− q)n(2q − 1) ≈ 2c.

The approximation in the above statement represents the error that comes

from ignoring the integer constraints. Therefore, if the voters’ cut points are

any s > sB, then the ratio of pivot probabilities in each state of the world

stays bounded away from 0 and infinity and is approximated as:(
2nA

nA

)
(qA)nA(1− qA)nA(

2nB

nB

)
(qB)nB(1− qB)nB

≈ 2qB − 1

2qA − 1
. (4)

Note that the right-hand side is independent of c. This is because the

organizer’s choice of the size of the electorate keeps the pivot probabilities in

each state relatively at the same order, and when c disappears, the relative

pivot probabilities stay bounded away from 0 and infinity. This is unlike

the case in which the number of voters is state independent, as depicted by

Equation (3).

4 All Limit Equilibria

In this section we characterize systematically the limiting equilibrium out-

comes that can be generated by any equilibrium sequence, as the recruitment

cost vanishes. The recruitment activity limits information aggregation in all

symmetric equilibria. Recall that sω is the median signal in state ω, that is,

qω = F (sω|ω) = 1/2.

Trivial Equilibrium:

An equilibrium is a trivial equilibrium if: i) the organizer recruits no voter

in either state, so that there is only one voter casting a ballot in both states,

and ii) the selected voter votes for policy a with a probability not more than

1/2 in both states. In a trivial equilibrium, the organizer is passive and in-

formation is not aggregated because only one voter makes the decision on the

implemented policy.

It is easy to see that a voting game G admits a trivial equilibrium for all

recruitment costs c if and only if the distribution of signals, F , satisfies the
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following inequality:

π

1− π
f(sA|A)

f(sA|B)
≤ 1. (5)

If inequality (5) holds, then in a trivial equilibrium, the voter who is se-

lected to cast his vote will vote for policy a with a probability not more than

1/2 in both states of the worlds. This in turn justifies the organizer’s behavior

to recruit no additional voters. Of course, if c is large, a trivial equilibrium

exist even if inequality (5) fails. However, if the inequality fails, then a trivial

equilibrium does not exist when the recruitment cost c is sufficiently small.

This is because, in a putative trivial equilibrium, the probability that the

voter voting for policy a is strictly larger than 1/2 in state A, and hence if

the recruitment cost is small, then the organizer’s best reply is to recruit some

voters.

All Non-Trivial Equilibria:

In Theorem 2 below, we argue that, fixing all parameters of the environ-

ment other than the recruitment cost, any limit point of a non-trivial equi-

librium cutoff sequence, as the recruitment cost disappears, has to be either

equal to sA or strictly larger than sB.

Theorem 2. Let {ck}k=1,2,... be a sequence of positive numbers converging to

zero.

1. For any s∗ that is a limit point of non-trivial equilibrium cutoffs of the

sequence of voting games {G(ck)}k=1,2,..., either s∗ = sA or s∗ > sB.

2. {G(ck)}k=1,2,... has a sequence of non-trivial equilibria with limit cutoff

s∗ = sA, and another sequence with limit cutoff s∗ > sB.

The theorem states that there are only 2 types of limit points of non-

trivial equilibrium cutoffs, as the recruitment cost disappears. None of these

equilibria aggregate information fully, so that information aggregation failure

is inevitable in any equilibrium.

One type of limit equilibrium outcome is when s∗ > sB. These types of

equilibria are essentially identical to the equilibrium outcomes of equilibria
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presented in Theorem 1. In such equilibria the majority selects policy a; i.e.,

there is full manipulation and a drastic failure of information aggregation.10

The second type of equilibrium sequences are those where there is a close

race between the two policies in state A. This is because s∗ = sA, and hence,

the probability that a randomly selected voter votes for policy a converges to

1/2. On the other side, in state B, the organizer recruits no one, and policy b

is implemented with a probability 1−F (sA|B) in state B. In the next theorem,

we identify the properties of the limit outcomes of such equilibrium sequences.

Theorem 3.

1. If inequality (5) is not satisfied, then along all equilibrium sequences with

limit cutoff s∗ = sA:

• The number of voters recruited in state A grows without bound.

• Policy a is implemented in state A with probability converging to

one.

2. If inequality (5) is satisfied, then for each of the following outcomes, there

exists a corresponding equilibrium sequence with limit cutoff s∗ = sA such

that:

• The number of voters recruited in state A grows without bound,

and policy a is implemented in state A with probability converging

to one.

• The number of voters recruited in state A stays bounded, and policy

a is implemented with a probability between 0 and 1 in state A.

In this type of equilibrium sequences with limit points s∗ = sA, whether

policy a is implemented in state A for sure depends on the number of voters

recruited. If inequality (5) fails, then all such equilibrium outcomes have the

organizer recruiting a number of voters that grows without bound, and hence,

even if there is a close race between the policies, policy a prevails as the winner

in state A.

10The only difference is that the number of voters may remain bounded when s∗ = 1.
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Remark 3. One may be tempted to think that equilibrium cut points that

converge to sA cannot be sustained, since in state B there is only one voter,

and hence, conditional on being pivotal, the voters should believe that the state

is B and hence vote for B. The main force that sustains this type of equilibrium

is the recruitment effect. Because in state A the electorate gets very large, the

recruitment effect pushes the belief toward state A, and the pivotality effect

pushes it in the opposite direction. When the expected vote share is 1/2, the

pivotal probability decreases to zero at the rate at which 1√
n

decreases to 0,

where n is the number of voters recruited. Therefore, the recruitment effect,

which is at the order of n, becomes stronger than the pivotal effect in the close

neighborhood of the vote fraction 1/2.

Finally, we illustrate the ordering of the equilibrium cutoffs with Figure

2. It shows the median types in the two states, sA and sB. The cutoff cor-

responding to the limit equilibrium of a large election with exogenous n—FP

(Information Aggregation)—must solve qA(s)− 1/2 = 1/2− qB(s), that is, in

both states the election must be equally close to being tied; see Feddersen and

Pesendorfer (1997). Otherwise, (3) would fail to be interior and would either

be infinity or zero.

b

0
b

1

EL (Info Aggregation)

b

sA

FP (Info Aggregation)

b

EL (Manipulated Electorate)

bb

sB

Figure: F (sA|A) = F (sB|B) = 1/2.

19 / 20

Figure 2: F (sA|A) = F (sB|B) = 1/2

5 Robust Election Design

In this section we explore whether electorate design can be a remedy for an

organizer’s ability to manipulate election outcomes. To this end, we analyze
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2 election design tools that provide protections against manipulation, namely,

quorum requirement and unanimity rule.

5.1 Participation Requirement

We start by relaxing the assumption that the minimum number of voters

participating in the election when the organizer is passive is 1, and instead, we

introduce the minimum number of voters that are participating as an election

design tool, denoted by the parameter 2m + 1. Our main result in this setup

is that if the number of participants who are present already without any

recruitment activity grows large, then there exists an equilibrium sequence in

which the majority votes for the correct policy; thus, information aggregates.

Specifically, suppose the number of voters is 2 (m+ n) + 1 for some integer

m, where m is the number of required pairs of voters and n is the number

of additional pairs of voters recruited by the organizer. We consider games

parameterized by c (a real number) and m, denoted G (c,m). We assume that

the m required pairs are free to the organizer and the recruitment cost is only

nc.11 The number of potential voters is N =
⌊
2
(
m+ 1

c

)
+ 1
⌋
. The following

result shows that information can be aggregated in the limit, and if m grows

sufficiently quickly, information will be aggregated.

Theorem 4. Let {ck,mk}k=1,2.. be a sequence of positive numbers ck converg-

ing to zero and integers mk diverging to infinity. We are interested in the

symmetric equilibrium sequences of the voting games {G (ck,mk)}k=1,2,....

1. There exists a sequence of equilibria such that the probability with which

the correct policy is implemented converges to one (that is, policy a in

state A and policy b in state B).

2. If mk diverges sufficiently fast relative to the rate at which ck converges

to 0, in all sequences of equilibria the probability with which the correct

policy is implemented converges to one.

11This assumption is for concreteness. Nothing changes if costs are (m + n)c.
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3. If mk diverges sufficiently slowly relative to the rate at which ck con-

verges to 0, then there is a sequence of equilibria in which policy a is

implemented with probability converging to one in both states (i.e., in-

formation aggregation fails and the outcome is manipulated).

The first part of the result is related to Theorem 2. If mk increases suf-

ficiently slowly compared to the rate at which ck disappears, then there is

an equilibrium sequence along which the voter cutoffs converge to sA. In the

limit, there is a close race in state A, and the vote shares for the available

policies are equal. However, despite the close race, in state A, policy a wins.

In state B, the vote share for policy B is strictly above 1/2 and because mk

diverges, policy b wins.

The second part of the result is an immediate consequence of the result

for exogenously large elections (Feddersen and Pesendorfer (1997) and Duggan

and Martinelli (2001)). When mk increases very fast, relative to the speed at

which ck disappears, the organizer doesn’t recruit anyone in either state, and

hence, we get an election in which the number of participants is independent

of the state of the world.

The third result is an immediate consequence of Theorem 1. Recall that

there exists a sequence of equilibria along which the number of voters diverges

in both states. Hence, if mk diverges sufficiently slowly so as not to exceed

that number, the originally identified equilibria stays an equilibrium.

One interpretation for the parameter m is that there is a “quorum” require-

ment, i.e., the minimal number of voters that the organizer must recruit is m.

Another interpretation is a mandatory voting requirement that increases the

participation rate even in the absence of the organizer’s recruitment efforts. In

the equilibria that aggregate information stated in the theorem, this constraint

on the lower bound on the number of participating voters will bind in state B

and, if m is sufficiently large, it will also bind in state A. Thus, the theorem

suggests that when the number of voters can be manipulated, quorums are

one instrument to improve the performance of elections.

Another such instrument one may consider is a unanimity rule, where pol-

icy a is elected only if all voters vote for a, which we analyze next.
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5.2 Unanimity Rule

In this subsection, we analyze what happens with a unanimity rule; i.e., all

of the participants’ votes are required for policy a to be implemented. It is

clear that the organizer will recruit no additional voter, because recruitment

is costly, and the probability that policy a is selected weakly decreases with

the electorate size. Because the organizer recruits no new person regardless of

his cost, we drop c as a parameter and consider a participation requirement of

2m+ 1 voters as in Section 5.1.

Because the organizer recruits no new voter, voters’ participation rates

will not depend on the state of the world. Therefore, our model corresponds

to models analyzed by Duggan and Martinelli (2001) and Feddersen and Pe-

sendorfer (1997), with a unanimity rule. It is well known by now that unanim-

ity rule is the only supermajority rule that fails to aggregate information in

large electorates. However, the extent to which information aggregation fails

depends on the informativeness of the extreme signals. In our environment, it

will depend only on the likelihood ratio of the highest signal which is

f(1|A)

f(1|B)
.

For this section, we assume that

π

1− π
f(1|A)

f(1|B)
< 1. (6)

If (6) fails, then there is a unique equilibrium in which voters vote for a for all

signals. Given this assumption, let sm be an interior equilibrium cutoff used

by the voters in the game with 2m + 1 voters.12 A voter is pivotal only if all

other 2m voters vote for a. Hence, a voter is pivotal in state ω with probability

F (sm|ω)2m. The indifference condition of the cutoff signal delivers that

π

1− π
f(sm|A)

f(sm|B)

(
F (sm|A)

F (sm|B)

)2m

= 1.

Lemma 2. limm→∞ sm = 1.

12Given (6), the existence of an interior equilibrium cutoff is guaranteed when the number
of participating voters is large.
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Proof. On the way to a contradiction, suppose that sm → x ∈ (0, 1). Then

F (x|A) > F (x|B) by the MLRP condition. However, then the indifference

condition cannot be satisfied at the limit, which is a contradiction.

Suppose now that sm → 0. Then, lims→0
F (s|A)
F (s|B)

= f(0|A)
f(0|B)

> 1. But then the

indifference condition cannot be satisfied at the limit, which is a contradiction.

In the following theorem, we show that the limit equilibrium probabilities

that the correct policy is implemented depend only on the informativeness of

the highest signal. This observation was made by Feddersen and Pesendor-

fer (1998) and Duggan and Martinelli (2001) in a related voting model. The

authors show that unanimity voting rule fails to aggregate information and,

therefore, unanimity rule is an inferior voting rule among other supermajority

rules. In our model, however, simple majority rule gives rise to effective ma-

nipulation by a conflicted organizer, while unanimity rule mitigates this type

of manipulation. Hence, when the highest signal is sufficiently informative, the

inefficiency induced by the unanimity rule may be less than the inefficiency

inflicted by the organizer’s manipulation.13

Theorem 5. Consider the unanimity rule with a quorum of m voters. Suppose

(6) holds and m → ∞. The probability that policy a is selected in state A

converges to (
π

1− π
f(1|A)

f(1|B)

) f(1|A)
f(1|B)−f(1|A)

,

and the probability that policy a is selected in state B converges to

(
π

1− π
f(1|A)

f(1|B)

) f(1|B)
f(1|B)−f(1|A)

.

As f(1|A)
f(1|B)

→ 0, these probabilities converge to 1 and 0, respectively. Hence,

information is arbitrarily close to being aggregated when signal 1 is very infor-

mative.

13The theorem restates Theorem 4 from Duggan and Martinelli (2001). We provide a
proof in the appendix for completeness.
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6 Robustness, Extensions and Discussion

In this section, we analyze various extensions of the model to highlight the

robustness of our model to variations on our assumptions.

6.1 Multiple States

We now extend the model to incorporate a continuum of states. To this end,

suppose that Ω := [0, 1], with g(ω) being the prior p.d.f. over the states of the

world. Assume that g(ω) has a strictly positive lower bound on its support.

We assume that the set of signals is S := [0, 1], and that the MLRP condition

is satisfied; i.e., for every pair of states ω1 < ω2,
f(s|ω1)
f(s|ω2)

is strictly decreasing

in s. Also, we assume that f(s|ω) has a uniform strictly positive lower and

upper bounds for all s ∈ S and ω ∈ Ω. Voters have identical preferences, where

v(ω) := u(b, ω) − u(a, ω) is a strictly increasing function, and that v(0) < 0

and v(1) > 0.

As before, the organizer observes the true state ω and picks a number of

pairs of voters to participate in the election. In this scenario, our main result,

i.e., an appropriate version of the statements in Theorem 1, continues to hold.

In particular, as c disappears, there is a sequence of equilibria in which the

probability that policy a is implemented converges to 1 in all states of the

world, the number of voters grows without bound, and the organizer’s payoff

converges to 1 in all states.

6.2 Heterogeneous Preferences and Private Values

Now we extend the model to accommodate heterogeneity in voter preferences.

We still maintain the assumption that there are two states, Ω = {A,B},
and that there is a finite number of voter types, T := {t1, .., tR}, where each

ti ∈ (0, 1), and ti is increasing in i. The type ti represents the probability

that a voter of type ti has to attach to the state of the world being state A

in order to be indifferent between the two outcomes a and b. Voters with

higher preference types are more difficult to convince to vote for a than voters

with higher preference types. However, it is feasible to persuade each voter to

vote in favor of policy j by providing sufficiently informative evidence in favor
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of state j. Each voter’s preference type is drawn according to a p.d.f. h(·)
with full support, and independent of the state, and independent of the signal

distribution.

In this environment, all of our results stated in Theorems 1-3 go through

with minor but straightforward modifications. In particular, the manipulated

equilibria are sustained in this setup. Also, the structure of all limit equilibria

as identified in Theorem 2 and the information aggregation result stated in

Theorem 4 continue to hold.

6.3 Competitive Organizers

In the paper we assume that there is a single organizer who makes all of the

recruitment choices. Suppose that there is a second organizer, whom we refer

to as O1, who prefers that policy b be implemented regardless of the state,

and he incurs the same marginal recruitment cost as the organizer, whom we

refer to as O0, who prefers that policy a be implemented independent of the

state.

In this scenario, there is always a sequence of manipulated equilibria in

which policy a is implemented with probability that converges to one in both

states, and O0 carries out all recruitment activity and O1 is passive. Similarly,

there is also a sequence of manipulated equilibria in which policy b is imple-

mented with probabilities that converge to one in both states, and O1 is active

and O0 is passive. There is, however, one more sequence of equilibria in which

O0 chooses to recruit many voters in state A, and O1 chooses to recruit many

voters in state B, and information gets aggregated; i.e., the correct policy is

implemented with probability that converges to one. Therefore, competition

among organizers opens up the possibility of information aggregation.

6.4 Role of Recruitment Cost

A strictly positive recruitment cost is essential for our main result in Theorem

1. This is because the organizer’s ability to manipulate the election outcome

comes from his ability to pick different voter participation rates in different

states. In the manipulated equilibria, the organizer recruits more voters in

state B than in state A. This is because, the probability that a randomly
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selected voter votes for policy a is strictly higher in state A then in state B,

and also because the marginal recruitment cost is strictly positive. If, contrary

to what we assume, recruitment is costless, the manipulated equilibria would

not be sustained. In particular, when faced with an aggressive voter behavior

in which voters vote for policy a with a probability strictly more than 1/2—

as is the case in manipulated equilibria— the organizer’s best reply would

be to recruit all potential voters in both states, which would take away his

ability to recruit different numbers of voters in different states. Intuitively,

strictly positive recruitment cost makes it optimal for the organizer to choose

a recruitment strategy that sways voters’ behavior aggressively in favor of

policy a.

6.5 Role of Organizer’s Private Information

The organizer’s ability to manipulate the electorate relies on his private infor-

mation about the state of the world. If we had assumed that he does not hold

any further information than the common prior belief, then his recruitment

strategy would be independent of the state of the world, and hence the voters

would not be able to infer any new information about the state of the world

from being recruited. As we argued before, the asymmetry in the number of

voters recruited in different states is essential for manipulation, and such an

asymmetry is not possible if the organizer has no private information. For

instance, if the minimum number of people the organizer can choose to re-

cruit is very large, then a result similar to Feddersen and Pesendorfer (1997)

would hold, and the voters would select the correct policy with arbitrarily high

accuracy.

6.6 Abstention, Costly Voting, and Subsidies

Abstention:

Feddersen and Pesendorfer (1996) observed that in an election in which

voters have common interests, some voters who are not well informed may

have strict incentives to abstain and their abstention has significant effects

on the election outcome. In the equilibrium of our model, however, there is

never a strict incentive to abstain: For all signals above the equilibrium cutoff,
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a voter strictly prefers to vote for policy b (rather than to abstain or vote

differently) and she strictly prefers to vote for a for signals below that cutoff.

With a signal exactly equal to the cutoff, a voter is just indifferent between

each vote and abstaining.

The fact that there is no incentive to abstain in this equilibrium relies on

the fact that the number of participating voters is odd, so that there are never

any ties. However, once voters can abstain, there may be additional equilibria

in which each voter does abstain with strictly positive probability, implying

a positive probability of an even number of voters and hence a tie. Thus,

our original equilibrium remains if voters can choose to abstain but additional

equilibria may arise.

Costly Voting and Subsidies:

Suppose that, in contrast to our model, all citizens can vote but voting

is costly. Here, recruitment may correspond to a subsidy by the organizer.

Concretely, suppose that there are N citizens and each citizen can vote at a

cost r. This cost may correspond to the cost of collecting information or to the

physical act of going to the voting booth. The organizer can reduce the cost of

voting to zero by paying c, for example, by bussing voters to the voting booth.

If the voting costs r are sufficiently high, only those citizens who receive a

subsidy will actually vote.14

Note that the cost r doesn’t actually have to be very large. To see this

point, suppose that voters receive their signal only after making the partic-

ipation decision (as in Krishna and Morgan (2012)). Now note that in the

original “manipulated equilibrium” of our model, we have nB > nA, that is,

not being recruited is evidence in favor of state A. Since in that equilibrium

in that state the election outcome is (correctly) a with high probability, this

suggests that participation incentives in that equilibrium are small. Moreover,

note that when a citizen contemplates participation, she compares her partic-

ipation cost r to her private benefit from the correct decision weighted by the

probability that she is pivotal. As we observed before, the number of voters

the organizer recruits is determined by equating the recruitment cost c (the

14In this context, one can interpret the “participation requirement” m as the number of
voters who have zero voting costs, while the cost of voting is r for the N − m remaining
voters.
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cost of the subsidy) to his private benefit from policy zero, weighted by the

probability that the election is tied. Thus, the probability of being pivotal

may be small—and the participation incentives may be weak—whenever the

organizer’s private benefit is large relative to the individual voter’s benefits

and if the subsidy c is of a magnitude similar to r. Thus, there may be many

scenarios where one may expect that many citizens who are not recruited will

optimally choose to not participate even for intermediate voting costs.

Further analysis of costly voting with subsidies may be an interesting exten-

sion of the current model, and such analysis may yield a better understanding

of exactly what such scenarios may be and when to expect voter subsidies to

have substantial effects on voting behavior.

7 Literature Review

Information aggregation in elections with strategic voters has been studied

by Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1996, 1997,

1998, 1999a,b), McLennan (1998), Myerson (1998a,b), Duggan and Martinelli

(2001), among others.15 These papers study equilibrium outcomes with an

exogenously large number of voters.

In particular, Feddersen and Pesendorfer (1997) show that in a model with

multiple states—and both private and common values—under all supermajor-

ity rules except the unanimity rule, large electorates aggregate information.

Similar to us, they provide a complete characterization of all equilibria. The

main difference from their model is that here the number of participating

voters is selected by a conflicted organizer, and hence, the number of voters

participating in the election is endogenously state dependent.

Myerson (1998b) introduces a Poisson model with population uncertainty

in which the expected number of voters may be state dependent. He shows that

large electorates aggregate information along some sequence of equilibria. In

15Bhattacharya (2013) observes the necessity of preference monotonicity for information
aggregation. Bouton and Castanheira (2012) find that voters’ imperfect information may
help solve certain coordination problems. Mandler (2012) shows that uncertainty about the
informativeness of the signals can also lead to failure of information aggregation. A recent
generalization is Barelli and Bhattacharya (2013). Gul and Pesendorfer (2009) show that
information aggregation fails when there is policy uncertainty.
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his model, the ratio of the expected numbers of voters across different states is

exogenously fixed along the sequence as the expected number of voters grows.

In our model, similar to Myerson’s model, the number of voters participating

is state dependent. However, the ratio of the number of voters is endogenously

determined via the choice of an organizer who incurs a cost for increasing the

number of the participating voters. A second difference is that we characterize

the limiting outcomes of all symmetric equilibria. We show that there is no

equilibrium in which information fully aggregates when the number of voters

is endogenous and there also exist equilibria in which the organizer’s favorite

outcome is implemented regardless of the state.

Methodologically, information aggregation in elections is related to work

on large auctions. Among others, this has been studied by Wilson (1977),

Milgrom (1979), Pesendorfer and Swinkels (1997, 2000), and Atakan and Ek-

mekci (2014). The papers study auctions in which the number of bidders

becomes large exogenously. Lauermann and Wolinsky (2012) introduce an

auction model in which the number of bidders is random and endogenously

state dependent.

Related studies of voter (non-)participation in elections include especially

Feddersen and Pesendorfer (1996), who identify the swing voters’ curse when

voters can abstain, and the vast literature on costly voting, especially Palfrey

and Rosenthal (1985), Krishna and Morgan (2011) and Krishna and Morgan

(2012). In these models, the number of votes cast depends on the state as

well. In Feddersen and Pesendorfer (1996), abstention facilitates information

aggregation whereas in Krishna and Morgan (2011) the cost of voting helps

increasing (utilitarian) welfare by screening according to preference intensities

in a model with both common and private values. Those models emphasize

choice on the voters’ side, showing how this can improve election outcomes,

whereas our model emphasizes the organizer’s ability to affect participation

and how it lowers efficiency.

A related paper that endogenizes the issues that are voted for by a strate-

gic proposer is Bond and Eraslan (2010). Similar to us, they show that the

unanimity rule may be superior to other supermajority voting rules. In their

model voting behavior under different rules have different implications for the

proposals put on the table by a strategic proposer. In particular, unanimity
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rule disciplines the proposer to make offers preferred by the voters. In our

model, unlike in theirs, the alternatives are fixed, but the participation rate

is endogenously determined by a strategic organizer. In our model, unanimity

rule restricts the organizer’s ability to create the asymmetry of participation

rates across the states.

Finally, a large literature analyzes a conflicted agent’s ability to manipu-

late one or more decision makers to act in favor of the agent’s interests, either

through using informational tools or by taking actions that directly affect the

decision makers’ incentives. An important instance are models of cheap-talk,

emanating from Crawford and Sobel (1982), who analyzed a biased sender’s

ability to transmit information and hence, induce behavior partially beneficial

to the sender. Our model shares with these models the feature that the orga-

nizer has superior information and has biased preferences. Our model differs

from the cheap talk literature, since information transmission mechanism is

not through cheap talk messages. The recent literature on Bayesian persua-

sion, initiated by Kamenica and Gentzkow (2011), and applied to a voting

context by Wang (2012) assumes that a sender can commit to an information

disclosure rule that generates public signals. Similar to that literature, we are

interested in the ability of an agent to induce others to undertake his preferred

action, but the tools that the agent can use are different.

8 Conclusion

Understanding the performance of voting mechanisms to pick the best alter-

natives for the society has always received attention, dating all the way back

to the Athenian leader Cleisthenes and later to Condorcet. In this paper, we

studied the ability of voting mechanisms to aggregate dispersed information

among voters when the election is taking place in the presence of an orga-

nizer who has the tools to change the turnout rate and whose interests are not

aligned with those of the voters. Our main result is that such an organizer

can manage to influence the election outcomes drastically, in his favor, thereby

preventing information aggregation completely. This result suggests that al-

though voting mechanisms may be very effective in aggregating information,

they may be quite susceptible, and hence not robust, to manipulation activi-
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ties by outsiders. An interesting feature of our model is that small electorates

in which the organizer is not allowed to intervene may perform much better

than large electorates in which the organizer can influence the turnout rate.

The organizer’s ability to get his desired outcome relies on his being able to

recruit many voters and does not rely on the abilities of cherry picking voters

who have information supporting his favorite policy, or voters who are a priori

more inclined to vote for his favorite policy. In practice, however, many of the

manipulation schemes involve the use of tools, such as the timing of elections

or targeted subsidies. Because in our model the organizer can pick only the

turnout rate and cannot distinguish between voters with different characteris-

tics, our sharp result provides a lower bound on the ability of an organizer who

has more tools than just the ability to pick the turnout rate of the election. We

also view our results as having implications for the use of elections as a means

to control a common agent by a dispersed group of principals (e.g., sharehold-

ers controlling a manager or faculty controlling a chair). In particular, our

main result suggests that elections may be an ineffective form of control if the

agent can manipulate turnout.
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A Appendix

A.1 Miscellaneous Results

In this part, we explore some properties of organizer’s best reply correspon-

dence, and the critical likelihood ratio that will be used in proving the theo-

rems.

Organizer’s Best Reply:

Let ñ := (ñA, ñB) be a generic mixed strategy of the organizer, and let the

set of all mixed strategies for the organizer in the voting game with recruitment

cost c be Ñ(c). The term ñω(i) denotes the probability that the strategy ñ

assigns to the integer i in state ω. The organizer’s best reply correspondence to

a voter cutoff s when the recruitment cost is c is η(s, c) := (ηA(s, c), ηB(s, c)) ⊂
Ñ(c). Moreover, ñ∗ ∈ η(s, c) if and only if each positive integer that is in the

support of ñ∗ω solves

max
n∈{0,1,..., 12 (N−1)}

2n+1∑
i=n+1

(
2n+ 1

i

)
(qω (s))i (1− qω (s))2n+1−i − nc.

Properties of η(s, c):

This part has some repetition from the main text, but we include this to

help the reader in the rest of the Appendix. Let

∆ (n− 1, ω, ŝ) :=
2n+1∑
i=n+1

(
2n+ 1

i

)
(qω (ŝ))i (1− qω (ŝ))2n+1−i

−
2n−1∑
i=n

(
2n− 1

i

)
(qω (ŝ))i (1− qω (ŝ))2n−1−i .

A simplification of the above expression delivers the following identity.

∆ (n− 1, ω, ŝ) =

(
2n

n

)
(qω)n (1− qω)n

1

2
(2qω − 1) .

If qω(ŝ) ≤ 1/2, then ∆ (n− 1, ω, ŝ) ≤ 0 for every n, so, the organizer

recruits no one since recruitment is costly.
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If qω(ŝ) > 1/2, then ∆ (n− 1, ω, ŝ) > 0 and ∆ (n− 1, ω, ŝ) > ∆ (n, ω, ŝ).

The implication of this is that if qω(ŝ) > 1/2, then there is a unique n such

that ∆ (n− 1, ω, ŝ) ≥ c and ∆ (n, ω, ŝ) < c.

Hence, the support of ηω contains at most two integers, and if it includes

two integers, they have to be adjacent integers.

Critical likelihood ratio, when the organizer uses a mixed strategy

β(ŝ, piv, rec; s, ñ) =
π

1− π
f(ŝ|A)

f(ŝ|B)

∑
i≥0 ñA(i)(2i+1

N
)
(
2i
i

)
qA(s)i(1− qA(s))i∑

i≥0 ñB(i)(2i+1
N

)
(
2i
i

)
qB(s)i(1− qB(s))i

.

(7)

Lemma 3. Fix s ∈ [0, 1]. For every ŝ ∈ [0, 1],

max
ñ∈η(s,c)

β(ŝ, piv, rec; s, ñ)

exists, and is attained by some pure strategy n ∈ η(s, c). Moreover, the set of

maximizers for each ŝ is the same. Similarly,

min
ñ∈η(s,c)

β(ŝ, piv, rec; s, ñ)

exists, and is attained by some pure strategy n ∈ η(s, c). Moreover, the set of

minimizers for each ŝ is the same.

Proof. The function β is continuous in ñ, and the the maximum of a continuous

function over a compact domain exists. Independence of the maximizers from

ŝ is seen by inspection of the function β.

Operator β̃:

Definition 1. Let

β̃ : [0, 1]× [0,∞)⇒ R+

be a correspondence that takes a signal and cost of recruitment as arguments,

and returns a positive number, that denotes a likelihood ratio. In particular,

x ∈ β̃(ŝ, c) if there is a strategy ñ ∈ η(ŝ, c) such that β(ŝ, piv, rec; ŝ, ñ) = x.

The mapping β̃ takes the signal ŝ as the cutoff strategy of the voters, then

calculates the best reply correspondence of the organizer to the cutoff strategy

33



ŝ, and then returns the number that is equal to the critical likelihood ratio

of type ŝ when all other voters follow the cutoff strategy ŝ and when the

organizer is following a strategy that belongs to the set of best replies to the

cutoff strategy with cutoff ŝ.

Lemma 4. The correspondence β̃(ŝ, c) is convex valued and is upper-hemicontinous

in its first argument, ŝ.

Proof. The best reply correspondence, η(ŝ, c) is upper-hemicontinous in ŝ—

which follows from Berge’s maximum theorem—and convex valued. The func-

tion β(ŝ, piv, rec; ŝ, ñ) is continuous in ñ. Moreover, because the densities

f(·|ω) are continuous for each ω ∈ {0, 1}, the upper hemicontinuity of the

organizer’s best reply correspondence implies that β̃ is upper-hemicontinous.

Convex-valuedness follows from the continuity of β in ñ, the fact that β is

single-dimensional, and convexity of the best reply correspondence of the or-

ganizer.

Lemma 5. A signal s ∈ (0, 1) is an equilibrium cutoff signal of G(c) if and

only if 1 ∈ β̃(s, c).

Proof. By construction, if 1 ∈ β̃(s, c), then there is a strategy ñ which is a best

reply for the organizer to the voter cutoff strategy s such that β(s, rec, piv; s, ñ) =

1. Now, observe that (s, ñ) is an equilibrium, because ñ is a best response of

the organizer to voter behavior s, and using s as a cutoff is a best response

for any given voter, since he is indifferent between the two alternatives in the

events that he has signal s, he is recruited and he is pivotal, when other voters

are following the same strategy and when the organizer follows the strategy

ñ. The other direction is straightforward, so we skip it.

A.2 Proof of Theorem 1

Proof:

Recall that sω is the median signal in state ω, that is, qω = F (sω|ω) = 1/2.

Our proof strategy is that we will first show that for all small c, there is

some s(c) > sB + ε such that 1 ∈ β̃(s(c), c). This means, there are equilibria

in which the voters vote for policy a with probability more than 1/2 in both

states. The second part of the proof will show that in such equilibria, as c
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disappears, a get selected with probability approaching 1, that the number of

voters grows without bound, and that the organizer’s payoff approaches 1.

We will start by showing the existence of equilibria with a large cutoff.

There are two steps we will show in the following development:

Claim 1:

∃ε > 0 such that lim
c→0

max β̃(sB + ε, c) < 1.

Claim 2:

∃εc > 0, with lim
c→0

εc → 0, such that lim
c→0

max β̃(1− εc, c) =∞.

These two findings together with the upper-hemicontinuity and convex valued-

ness of β̃ (Lemma 4) imply, via a version of the intermediate value theorem16,

that for all c smaller than a cutoff c̄ > 0, there is a s(c) ∈ (sB + ε, 1− εc) such

that 1 ∈ β̃(s(c), c), delivering the desired result.

Claim 1:

∃ε > 0 such that lim
c→0

max β̃(sB + ε, c) < 1.

Proof of Claim 1:

Remember that qω(x) denotes the probability that a randomly selected

voter votes for policy a in state ω, and let nω(x, c) be a pure best reply of

the organizer if the voters are using the cutoff strategy x. We will drop the

arguments in these objects occasionally to save on notation and for ease of

reading.

Using the derivations we have for the organizer’s best reply conditions

before, i.e., that ∆(nω − 1, ω, x) ≥ c and ∆(nω, ω, x) < c, we now posit and

prove the following:

16We have not been able to find an intermediate value theorem for correspondences in
standard textbooks, however it is straightforward to extend the standard intermediate value
theorems to convex valued, upper-hemicontinous correspondences, and we skip the proof.
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Lemma 6. Given any x ∈ (0, 1), c > 0, and nω ∈ ηω(x, c):

2c

2qω − 1
≤
(

2nω
nω

)
(qω)nω (1− qω)nω ≤ c

qω (1− qω) (2qω − 1)

(nω + 1)

(2nω + 1)
.

Proof: Rewriting the hypothesis,

∆(nω, ω, x) ≤ c =⇒(
2nω + 1

nω

)
(qω)nω+1 (1− qω)nω+1(2qω − 1) ≤ c =⇒

(2nω + 1)

(
2nω
nω

)
(qω)nω (1− qω)nω ≤ c(nω + 1)

qω (1− qω) (2qω − 1)
,

and

1

2

(
2nω
nω

)
(qω)nω (1− qω)nω(2qω − 1) ≥ c =⇒(

2nω
nω

)
(qω)nω (1− qω)nω ≥ 2c

2qω − 1
.

Taken together, the claim follows.

�

For the rest of the Appendix, we will occasionally use Stirling’s approxi-

mation, which is:

lim
n→∞

n!√
2πn

(
n
e

)n = 1.

Lemma 7. If qω (x) ∈ (0.5, 1), then for any selection of pure strategy best

replies by the organizer, {nA(x, c), nB(x, c)}c>0

lim
c→0

nB (x, c)

nA (x, c)
=

ln (4 (qA) (1− qA))

ln (4 (qB) (1− qB))
.

Proof: If qω (x) ∈ (0.5, 1), then limc→0 nω (x, c) =∞.
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Rewriting the approximation for state A,(
2nA
nA

)
(qA)nA (1− qA)nA

=
(2nA)!

(nA!)2
(qA)nA (1− qA)nA

∼=
√

2π2nA
(
2nA

e

)2nA(√
2πnA

(
nA

e

)nA
)2 (qA)nA (1− qA)nA

=
(4qA(1− qA))nA

√
π
√
nA

.

The approximation for state B is similar, and hence,

lim
c→0

(
2nA

nA

)
(qA)nA (1− qA)nA(

2nB

nB

)
(qB)nB (1− qB)nB

(8)

= lim
c→0

√
nB
nA

(
(4qA(1− qA))

(4qB(1− qB))
nB
nA

)nA

,

where the equality is from Stirling’s approximation and the previous rewriting.

From Lemma 6 and qω (x) ∈ (0.5, 1), the ratio (8) must be bounded away

from zero and infinity, which requires that

lim
c→0

nB(x, c)

nA(x, c)
= K ∈ (0,∞) ,

(if limc→0
nB

nA
= 0, then the ratio vanishes, if limc→0

nB

nA
= ∞ it explodes).

Using again that the ratio is bounded, this requires

lim
c→0

(4qA(1− qA))

(4qB(1− qB))
nB
nA

= 1,

from which the claim of this step follows.

�

Remark 4. Notice that if there is an equilibrium sequence in which limc→0 x(c) =

x such that qω(x) ∈ (0.5, 1), the ratio of the number of voters in the two states

stays bounded as c goes to zero by Lemma 7. A slightly more complicated argu-

ment shows that the same conclusion—that the ratio of the number of voters
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stays bounded—holds also if limc→0 x(c) = 1. The key observation for this

argument is that if limx(c) = 1, and if limnA(x(c), c)/nB(x(c), c) → ∞ then

β(s, piv, rec;x(c), n(c)) = 0 for every s ∈ [0, 1], which contradicts that these

x(c) are interior equilibrium cutoffs.

We will now complete the proof for claim 1. From Lemma 6, it follows

that,

max β̃(s, c)

= max
(nA,nB)∈η(s,c)

πf(s|A)

(1− π)f(s|B)

(2nA + 1)
(
2nA

nA

)
(F (s|A)(1− F (s|A)))nA

(2nB + 1)
(
2nB

nB

)
(F (s|B)(1− F (s|B)))nB

≤ max
(nA,nB)∈η(s,c)

πf(s|A)

(1− π)f(s|B)

(2nA + 1) c
qA(1−qA)(2qA−1)

(nA+1)
(2nA+1)

(2nB + 1) 2c
2qB−1

= max
(nA,nB)∈η(s,c)

πf(s|A)

(1− π)f(s|B)

2nA + 1

2nB + 1

2qB − 1

2qA (1− qA) (2qA − 1)

nA + 1

2nA + 1
.

Note that max β̃(s, c) denotes the biggest element of the correspondence β̃.

The term (nA, nB) denotes a pure strategy that puts probability 1 to integers

nA and nB in states A and B respectively. Applying Lemma 7, we obtain that,

for any fixed s such that qB(s) ∈ (0.5, 1),

lim
c→0

max β̃(s, c) ≤ πf(s|A)

(1− π)f(s|B)

2qB − 1

4qA (1− qA) (2qA − 1)

ln (4 (qB) (1− qB))

ln (4 (qA) (1− qA))
.

Note that the right side vanishes for s→ sB from above, because qB (s)→
1/2 (while qA (s) stays strictly larger than 1/2). So, there exists some ε and

c∗ such that for all c ≤ c∗,

max β̃(sB + ε, c) < 1.

Note also that the number 1 on the right hand side of the inequality is

arbitrary, and the same proof works to show that this inequality holds for any

positive number.

Claim 2:
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∃εc > 0, with lim
c→0

εc → 0, such that lim
c→0

max β̃(1− εc, c) =∞.

Proof of Claim 2:

Let f(x) := 2x(1−x)(2x−1), and let εc > 0 be a number that is close to zero

that satisfies f(qA(1−εc)) = 2c. Existence of such a εc > 0 is guaranteed when c

is small, and limc→0 εc = 0. We are going to show that limc→0 max β̃(1−εc, c) =

∞.

The definition of 1 − εc is that in state A, the organizer with a marginal

cost c is indifferent between recruiting no additional voter and recruiting one

pair of voters.

Note that,

f ′(q) = 12q (1− q)− 1.

and f ′(q) < 0 for q sufficiently close to one. Hence, for x close to 1, qB(x) <

qA(x) implies whenever f(qA(x)) = 2qA(x)(1 − qA(x))(2qA(x) − 1) = 2c,

f(qB(x)) = 2qB(x)(1 − qB(x))(2qB(x) − 1) > 2c. Hence, the best reply of

the organizer to the cutoff strategy 1 − εc is that in state B, he recruits at

least 1 pair, and actually as 1 − εc → 1, exactly one pair. This is because,

∆(1, B, x) =
(
4
2

)
qB(x)2(1 − qB(x))2(2qB(x) − 1) < f(qA(x)) = 2c for all x

sufficiently close to one. Writing down the pivotal probability in state B,

we get 2qB(x)(1 − qB(x)), and if in state A the organizer recruits no one,

then the pivotal probability in state A is 1. Because limx→1
qB(x)
qA(x)

= 1, and

limx→1
1−qB(x)
1−qA(x)

= f(1|B)
f(1|A) , and that f(1|A)

f(1|B)
> 0, we have that

lim
c→0

max β̃(1− εc, c) = lim
c→0

πf(1− εc|A)

(1− π)f(1− εc|B)

1

3

1

2qB(1− εc)(1− qB(1− εc))
= ∞.

Combining Claims 1 and 2 and Lemma 4:

Because β̃(s, c) is upper-hemicontinous and convex valued (Lemma 4), and

combining this with Claims 1 and 2, it follows via a version of the intermediate

value theorem that there is a c̄ > 0 and ε > 0 such that for every c < c̄, there

is an s(c) > sB + ε such that 1 ∈ β̃(s(c), c). Hence, there is an equilibrium in

which the voters vote for policy a with a probability more than 1/2.
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Modifying Proof of Claim 2 to ensure large participation:

In this part, we will modify the second part of the above proof (i.e., the

proof of claim 2) to show that εc can be chosen in such a way that the organizer,

when faced with voters using a cutoff 1 − εc, is indifferent between m(c) and

m(c) − 1 pairs of voters in state A and recruits m(c) pairs of voters in state

B, and that limc→0m(c) =∞.

The alternative mapping that we consider is xm (c), defined analogously as

the solution to(
2m

m

)
(qA (x))m (1− qA (x))m(2qA (x)− 1) = 2c.

As before, for given c sufficiently small,(
2m

m

)
(qB (x))m (1− qB (x))m(2qB (x)− 1)

> 2c >(
2m+ 2

m+ 1

)
(qB (x))m+1 (1− qB (x))m+1(2qB (x)− 1).

Thus, we can pick some x̂m (c) just above xm (c) such that in state A, the

organizer recruits m − 1 pairs of voters and in state B recruits m pairs of

voters. As c→ 0, it must be that x̂m (c)→ 1 and similar to before,

lim
c→0

max β̃(x̂m(c), c) =∞.

Now consider a sequence of equilibria whose existence has been shown with

cutoffs bounded away (above) sB, i.e., limc→0 s(c) = s∗ > sB.

If s∗ < 1, then limc→0 nω(s(c), c) → ∞. This follows directly from the

properties of the best reply correspondence of the organizer.

If s∗ = 1, then note the following: Consider the function g(m,x) =(
2m
m

)
xm(1 − x)m(2x − 1), where m is a positive integer and x ∈ [0, 1]. There

is some ε > 0 such that g(m,x) is decreasing in x and m, in the region where

x > 1 − ε.17 This property of the function g together with the property for

17To see that g(m,x) is decreasing in m for all x > 1 − ε for some ε > 0, notice that
g(m+1,x)
g(m,x) = (2m+2)(2m+1)

(m+1)m x(1 − x) < 1 for all m, when x is close to 1. To see that g(m,x)

is decreasing in x, first notice that if g(1, x) is decreasing in x, then so is g(m,x) for any
m ≥ 1. Showing that g(1, x) is decreasing in x for x close to one is straightforward and we
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the equilibrium cutoff s(c) that, s(c) ≤ xm(c), and also the hypothesis that

limc→0 s(c) = 1 implies that nω(s(c), c) ≥ m(c). Since this exercise can be

repeated for any arbitrary m, we can pick the sequence m(c) in a way that it

grows unboundedly. Therefore, the resulting equilibrium participation grows

without bound.

Showing that policy a gets selected:

Let s (c) denote the equilibrium cutoff sequence that we showed the exis-

tence of in the previous parts of this Proof. By construction, 1 > s (c) > sB+ε

for all c smaller than c̄ > 0. We show that the probability of the majority vot-

ing for policy a approaches one as c→ 0. Without loss of generality, suppose

s(c) converges. The claim is obvious if

lim
c→0

s(c) = 1.

If not, then

1 > lim
c→0

s(c) ≥ sB + ε

implies

lim
c→0

qA (s (c)) > lim
c→0

qB (s (c)) > 0.5,

and limc→0 nω (c) → ∞. But this implies the claim also for the second case,

because a law of large numbers applies. Thus, we have proven that across

the sequence of equilibria we have shown the existence of, the probability that

policy a gets implemented approaches 1, as c disappears.

Showing that organizer’s payoff is 1 in both states:

Let U c
O(s(c), ñ(c)) denote the equilibrium payoff of the organizer in the

election in which the marginal recruitment cost is c and the equilibrium strat-

egy profile s(c), ñ(c) is the one identified in the previous parts. Consider the

following alternative strategy n̄(c) := (b 1√
c
c, b 1√

c
c), i.e., n̄(c) is the strategy

in which the organizer invites b 1√
c
c pairs of voters in both states. Note that,

as c → 0, recruitment cost incurred by the strategy n̄ disappears. More-

over, because c → 0, the number of recruited voters go to ∞, and because

s(c)→ s∗ > sB+ε, by a weak version of Law of Large Numbers, the probability

that the majority votes for policy a approaches 1 when the organizer employs

skip it.
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strategy n̄(c). Hence, limc→0 U
c
O(s(c), n̄(c)) → 1. Because ñ(c) is a best reply

to voter cutoff strategy s(c), it has to be that U c
O(s(c), ñ(c)) ≥ U c

O(s(c), n̄(c)),

for every c > 0. Therefore, limc→0 U
c
O(s(c), ñ(c)) = 1, as well. Since, in each

state, the organizer’s payoff is bounded above by 1, and since each state oc-

curs with positive probability, the organizer’s payoff conditional on each state

converges to 1, as well.

�

A.3 Proof of Theorem 2

This theorem characterizes all limit points of non-trivial equilibrium cutoffs:

PART 1: Sequences with limit points s∗ > sB: Manipulated Equilibria

The second part of Theorem 2, item 2 follows from our main theorem.

PART 2: Sequences with limit points s∗ = sA

Step 1: To show sA is the only possible limit point of non-trivial equilibria,

not more than sB.

Lemma 8. Let {s(c), nA(c), nB(c)}c>0 be a selection of cutoffs s(c) for the

voters, and a pair of integers (nA(c), nB(c)) that are in the support of the

organizer’s best reply to voter strategy s(c) with recruitment cost c. If 1 >

limc→0 s(c) > sω, then (we drop the dependence of nω on c here)

lim
c→0

(2nω + 1)

(
2nω
nω

)
qω(s(c))nω(1− qω(s(c)))nω = 0.

Proof. First, if lim s(c) > sω, then lim qω(s(c)) = q∗ > 1/2. Therefore,

limnω(c) =∞. By Stirling’s approximation, we get that

lim
c→0

(
2nω

nω

)
qω(s(c))nω(1− qω(s(c)))nω

(4q∗(1− q∗))nω
≤ 1.

Because q∗ > 1/2, 4q∗(1− q∗) < 1, and hence

lim
c→0

(2nω + 1)(4q∗(1− q∗))nω = 0.

Combining this with the above equality delivers the result.

Clearly, if s∗ < sA, then the probability that a randomly selected voter

42



votes for policy a is strictly less than 1/2 in both states, and the organizer

recruits no one. But then this is a trivial equilibrium. So if there is any

non-trivial equilibrium sequence, its limit point, s∗ ≥ sA. If s∗ > sB, then

these are manipulated equilibria, and we showed their existence and analyzed

its properties in Theorem 1. So first suppose that sA < s∗ < sB. In that

case, when k is sufficiently large, the organizer recruits no one in state B, and

many voters in state A. In fact, because s∗ > sA, qA(s(c)) → q∗A > 1/2, and

therefore, in any sequence of equilibria, for any selection of integers {n(A, c)}
that are in the support of the equilibrium recruitment strategy of the organizer,

n(A, c)→∞. Therefore, by Lemma 8 above,

(2ñ(A, c) + 1)

(
2ñ(A, c)

ñ(A, c)

)
qA(s(c))ñ(A,c)(1− qA(s(c)))ñ(A,c) → 0.

Therefore, max β̃(s(c), c) → 0, which is a contradiction to s(c) being an

equilibrium cutoff.

On the way to a contradiction, suppose that s∗ = sB.

We will now argue that this cannot be the case since

lim max β̃(s(c), c) = 0 if s(c)→ sB.

First, note that

lim
c→0

qA(s(c)) = qA(sB) > 1/2,

and this implies

lim
c→0

(2nA + 1)

(
2nA
nA

)
qnA
A (1− qA)nA = 0.

for every sequence of integers nA(c) in the support of the organizer’s best

reply, via Lemma 8. So, there cannot be any infinite subsequence of the se-

quence equilibrium cutoffs in which qB(s(c)) ≤ 1/2. This is because, otherwise,

along such a subsequence, nB(c) = 0, and hence lim max β̃(s(c), c) = 0. So,

we now look at the infinite subsequence along which qB > 1/2.

Also remember that max β̃(s(c), c) is attained by some pure strategy that

is in η(s(c), c), and we will denote such a pure strategy with a pair of integers,

nA and nB which correspond to the integers in the support of the strategy in
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states a and b, respectively. Surely these integers depend on c, but for ease

of reading, when it does not cause confusion, we will drop the dependence of

these integers on c.

In what follows, we will bound lim max β̃(s(c), c) from above, by either

putting a lower bound on the multiplication of two terms on the denominator,

which is

(2nB + 1)

(
2nB
nB

)
qnB(1− qB)nB ,

or by directly arguing that

(2nA + 1)
(
2nA

nA

)
qnA
A (1− qA)nA

(2nB + 1)
(
2nB

nB

)
qnB
B (1− qB)nB

→ 0.

For any given q > 1/2, the function f(q, n) := (2n + 1)
(
2n
n

)
qn(1 − q)n can

have at most one peak, when viewed as a function of n. This is because,

f(q, n+ 1)

f(q, n)
=

2n+ 3

2n+ 1

(2n+ 2)(2n+ 1)

(n+ 1)2
q(1− q) =

4n+ 6

n+ 1
q(1− q).

A simple calculation shows that the expression for f(q,n+1)
f(q,n)

is a strictly de-

creasing function of n. When q is sufficiently close to 1/2, f(q, n) is strictly

increasing in n at n = 0. Therefore, for every nonnegative integer N∗, the

minimum of f(q, n) in the domain n ∈ {0, 1, ..., N∗} is attained at one of the

extreme points, i.e., either at n = 0 or n = N∗.

Pick any infinite subsequence along which nA(c) ≥ nB(c). From the above

argument when c is small,

f(qB(s(c)), nB(c) ≥ min{f(qB(s(c)), nA(c); f(qB(s(c)), 0)}.

Along a subsequence at which the above minimum is attained at n = 0,

f(qB(s(c)), 0) = 1, and hence our claim follows. This is because,

(2nB+1)

(
2nB
nB

)
qnB(1−qB)nB ≥ min

n∈{0,1,...,nB}
f(qB, n) ≥ min

n∈{0,1,...,nA}
f(qB, n) = 1.

Where the first inequality follows from the definition of f(q, n), and the
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second one follows from the property of the subsequence that nA ≥ nB, and

hence the min is taken over a larger set. This together with

lim(2nA + 1)

(
2nA
nA

)
qnA
A (1− qA)nA = 0.

delivers that lim max β̃(s(c), c) = 0 along such a sequence.

Along the remaining sequence along which the minimum of the above ex-

pression is attained at f(qB(s(c)), nA(c),

(2nA + 1)
(
2nA

nA

)
qnA
A (1− qA)nA

(2nB + 1)
(
2nB

nB

)
qnB
B (1− qB)nB

≤
(2nA + 1)

(
2nA

nA

)
qnA
A (1− qA)nA

(2nA + 1)
(
2nA

nA

)
qnA
B (1− qB)nA

=
qnA
A (1− qA)nA

qnA
B (1− qB)nA

→ 0.

The last line follows from the fact that qA(1− qA) < qB(1− qB), and that

nA →∞. Here, qA(1− qA) < qB(1− qB) because qA > qB ≥ 1/2.

Now the only remaining subsequence is the one along which nA(c) < nB(c).

For such a subsequence, notice that the optimality of the organizer’s best reply

delivers: (
2nB
nB

)
qnB
B (1− qB)nB ≥ 2c

2qB − 1
,

and

(
2nA
nA

)
qnA
A (1− qA)nA ≤ c

2qA(1− qA)(2qA − 1)

n+ 1

2n+ 1
≤ c

2qA(1− qA)(2qA − 1)
.

Notice that, 2qB − 1 → 0, and combining this with nA(s(c)) < nB(s(c))

delivers:

lim
c→0

(2nA + 1)
(
2nA

nA

)
qnA
A (1− qA)nA

(2nB + 1)
(
2nB

nB

)
qnB
B (1− qB)nB

= 0.

which then implies that lim max β̃(s(c), c) = 0 along such a sequence as well.

Step 2: To show sA is an attainable limit point.
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The proof strategy here will be similar to the proof for the existence of

manipulative equilibria in Theorem 1.

Using Lemma 7 (above) as before, it is straightforward to show that there

exists some small ε̄ > 0 such that for every 0 < ε < ε̄, lim max β̃(sA + ε, c) =

0. We will show that there is an ε(c) > 0 with lim ε(c) = 0, such that

lim max β̃(sA + ε(c), c) = ∞. Clearly, then, via our version of intermediate

value theorem, again an equilibrium with a cut point s(c) ∈ (sA + ε(c), sA + ε)

exists, for every small c. By the previous step, the limit point of s(c) has to be

sA. So all we have to show is that there is a mapping ε(c) > 0 with lim ε(c) = 0

such that lim max β̃(sA + ε(c)) =∞.

Note that in state B, the organizer recruits no one, for ε(c) sufficiently

small. So our task is to show that (2nA + 1)
(
2nA

nA

)
qnA
A (1 − qA)nA can be made

arbitrarily large, for small c, with a cutoff sA + ε(c).

Given any integer a, let s(a, c) > sA be such that the organizer is in-

different between recruiting a and a + 1 pairs of voters when the voters are

using a cutoff strategy with a cutoff s(a, c). In particular, (2qA(s(a, c)) −
1)
(
2a
a

)
qA(s(a, c))a(1 − qA(s(a, c)))a = c. It is evident by now that we can do

the selection of s(a, c) such that limc→0 sA(a, c)→ sA for every integer a. (Note

that such a selection could be made by picking cutoffs that converge to 1 as

well)

Let s(a) > sA be equal to min{s̃(a), sA+ ε̄}, where s̃(a) is the largest signal

that has the property that, for every q ∈ [1/2, qA(s̃(a))]

2− a(2q − 1)2

q(1− q) ≥ 0.

For every a, such a s̃(a) > sA exists, by inspection of the inequality. More-

over, for a sufficiently large, s(a) = s̃(a) < sA + ε̄.

Note that, lim max β̃(s(a), c) = 0. Moreover, lim max β̃(s(a, c), c) = O(
√
a),

which follows from Stirling’s approximation,

a

(
2a

a

)
qA(s(a, c))a(1− qA(s(a, c)))a ∼= a

4a√
π
√
a

(
1

2

)a(
1

2

)a
,

so that

lim
a→∞

lim
c→0

max β̃(s(a, c), c) =∞.
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Therefore, via a version of the intermediate value theorem, for each a suffi-

ciently large, there is a c̄ such that for all c < c̄, there is s∗(a, c) ∈ (s(a, c), s(a))

such that 1 ∈ β̃(s∗(a, c), c).

Step 3: To show that an equilibrium sequence exists whose limit point is

sA and for which in state A, a majority selects policy a with probability one

in the limit.

Note that if s∗ = sA, then in state B, no one is recruited, and hence

there is only one voter for every c. Therefore, as c → 0, the term (2nA +

1)
(
2nA

nA

)
qnA
A (1 − qA)nA converges to a number k ∈ (0,∞). Now consider the

cutoff s∗(a, c) defined in step 2, above. Note that the organizer’s best reply to

this cutoff in state A is to recruit at least a voters, for c small enough. This is

because, s∗(a, c) < s̃(a), where for every q ∈ [1/2, qA(s̃(a))],

2− a(2q − 1)2

q(1− q) ≥ 0.

The marginal benefit of the organizer,

∂
(
2a
a

)
(q(1− q))a(2q − 1)1/2

∂q
=

1

2

(
2a

a

)
(q(1− q))a[2− a(2q − 1)2

q(1− q) ] > 0,

for every q ∈ [1/2, qA(s̃(a))], and hence the support of the organizer’s best

replies at state A are at least a pairs of voters, whenever the voters are using

a cutoff between s(a, c) and s̃(a). Because the equilibrium cutoff s∗(a, c) that

we identified is in that interval, the organizer indeed recruits at least a pairs

of voters in state A.

Since a is arbitrary, we can construct a sequence of equilibria along which

s(c)→ sA, and the number of voters recruited in state A grows without bound.

Now we will show that if s(c) → sA and if the number of voters in state

A grows without bound, then the majority selects policy a with a probability

that converges to 1. As we stated in the previous paragraph:

lim
c→0

(2nA + 1)

(
2nA
nA

)
qnA
A (1− qA)nA = k ∈ (0,∞).

Where again, nA, qA clearly depend on s(c) and c, but we dropped the

dependence for ease of reading. Because nA →∞, s(c) > sA. The probability

47



that the majority selects policy a in state A is:

2nA+1∑
i=nA+1

(
2nA + 1

i

)
qiA(1− qA)2nA+1−i.

To show that this probability converges to 1, we use the following lemma.

Lemma 9. Let {q(c)}c>0 be a selection of probabilities with lim q(c) → q∗,
and {n(c)}c>0 be a selection of integers such that limn(c)→∞ . If

lim
c→0

(2n(c) + 1)

(
2n(c)

n(c)

)
q(c)n(c)(1− q(c))n(c) = k ∈ (0,∞),

then

lim
c→0

n(c)∑
i=0

(
2n(c) + 1

i

)
q(c)i(1− q(c))2n(c)+1−i = 0.

Proof. Pick any pair q, n. Let

t(i, n) :=

(
2n+1
n+1

)
qn+1(1− q)n(

2n+1
i

)
qi(1− q)2n+1−i

= (
q

1− q )n+1−i (2n+ 1− i)(2n− i)...(n+ 2)

n(n− 1)...(i+ 1)
.

Note that t(i, n) > 1 for i ≤ n because q > 1/2. Moreover, t(i, n) is

decreasing in i.

Pick an arbitrary ε > 0. Let 1 + κ(ε) be a lower bound strictly larger than

1 for the term
2n+ 1− (n(1− ε))

n(1− ε) + 1
.

For i ≤ (1− 2ε)n, we have that t(i, n) ≥ (1 + κ(ε))εn. Therefore,

n∑
i=0

(
2n+ 1

i

)
q(n)i(1−q(n))2n+1−i ≤ ((n(1−2ε))(1+κ(ε))−εn+2εn)

(
2n+ 1

n

)
qn+1(1−q)n.

Taking n→∞, and then using the fact that ε was arbitrary, and the fact that

(2n(c) + 1)

(
2n(c)

n(c)

)
q(c)n(c)(1− q(c))n(c) → k ∈ (0,∞)

delivers the result.
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Step 4: Proof that if inequality (5) holds, there is an equilibrium with limit

cutoff sA and with a bounded number of voters.

Note that β̃(sA, c) is single valued for every c > 0, and that value is equal

to π
1−π

f(sA|A)
f(sA|B)

. This is because, η(sA, c) has a single element for every c > 0,

and this single element is a pure strategy that recruits no one in both states.

Hence, if inequality (5) holds, then max β̃(sA, c) ≤ 1, for every c > 0. By

the argument in step 2, there is some large a and c̄ > 0 such that for every

c < c̄, max β̃(s(a, c), c) > 1. Therefore, by a version of the intermediate value

theorem, there is some s(c) ∈ [sA, s(a, c)] such that 1 ∈ β̃(s(c), c). Because

s(c) < s(a, c), and because for all sufficiently small c, s(a, c) < s̃(a), and

because s(a, c) is the cutoff signal to which the organizer best reply is to

recruit at most a+1 pairs of voters in state A, the organizer recruits not more

than a+ 1 pairs of voters in state A when the voters are using the cutoff s(c).

Because this is true for every c < c̄, and because limc→0 s(a, c) = sA, we can

construct a sequence of equilibrium cutoffs that converge to sA and along such

equilibria, the organizer recruits a bounded number of voters in state A (and

no one in state B).

Step 5: Proof that if inequality (5) is not satisfied, the all equilibria with

limit cutoff sA have an unbounded number of voters.

On the way to a contradiction, suppose that there is an equilibrium se-

quence with limit cutoff sA, and which has a bounded number of voters in

state A, say less than k. Notice that,

lim inf
c→0

∑
i>0

ñ(c)(i)× (2i+ 1)

(
2i

i

)
(qA(s(c))(1− qA(s(c))))i ≥ 1,

where ñ(c) is the equilibrium strategy of the organizer. This is because,

qA(s(c)) → 1/2, (2i + 1)
(
2i
i

)
(1/4)i is strictly increasing in i, and because

ñ(c)(i) = 0 for every i > k. Moreover, f(s|A)
f(s|B)

is strictly increasing in s, and

hence, for every s > sA,
π

1− π
f(s|A)

f(s|B)
> 1.

But this contradicts the equilibrium requirement that 1 = β(s(c), piv, rec; s(c), ñ(c)).
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A.4 Proof of Theorem 4

As we argued in the main text after the statement of the Theorem, items 2

and 3 follow from a slight modification of Feddersen and Pesendorfer (1997).

In the rest of the proof, we will show that there is a sequence of equilibria that

aggregates information.

For every k, let sk be an equilibrium cutoff of the voting game in which

there are 2mk + 1 voters in both states of the worlds. This is the setup of

Feddersen and Pesendorfer (1997), and sk → s∗ ∈ (sA, sB) since mk →∞.

We will now construct a sequence of equilibrium cutoffs, s̃k, such that infor-

mation aggregates along such equilibria. Consider the mapping β̃k(s, c) which

is a modification of the mapping β̃(s, c) by incorporating that the minimum

number of voters is 2mk + 1. Clearly for large enough k, ñB(sk, ck) = mk, i.e.,

the organizer recruits no one in state B. If ñA(sk, ck) = mk, i.e., if in state A

also the organizer recruits no one, then it is an equilibrium that the organizer

recruits no one, and the voters use a cutoff strategy with a cutoff sk, and let

s̃k = sk in this case.

If ñA(sk, ck) > mk, then because (2m+ 1)
(
2m
m

)
qA(sk)

m(1− qA(sk))
m) is de-

creasing in m when m is large and sk is sufficiently close to s∗, max β̃k(sk, ck) <

1. Moreover, β̃k(sA, ck) > 1 when k is sufficiently large. Hence, there is a

s̃k ≥ sA such that s̃k is an equilibrium cutoff of the voting game with the orga-

nizer. The proof that when s̃k > sA, as k →∞, in state A the probability that

policy a is implemented converges to one follows identical reasoning as Lemma

9, so we skip it. Clearly, in state B, the organizer recruits no new voter, and

since mk → ∞, in state B, policy b is implemented with a probability that

approaches to 1, and hence information is aggregated in both states.

A.5 Proof of Theorem 5 (Unanimity)

Let ρ(s) := f(s|A)
f(s|B)

We start by noting the identity:

F (sm|A)

F (sm|B)
= (1 +

F (sm|A)− F (sm|B)

F (sm|B)
).

The indifference condition of the cutoff signal delivers that:
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(
F (sm|A)

F (sm|B)

)2m

=

(
1 +

F (sm|A)− F (sm|B)

F (sm|B)

)2m

=
(1− π)

πρ(sm)
.

The next calculation follows from the Lemma in the main text which

showed that sm → 1, and hence that F (sm|B) → 1, and that F (sm|A) −
F (sm|B)→ 0:

lim
m→∞

(
1 +

(F (sm|A)− F (sm|B))

F (sm|B))

)2m

=
(1− π)

πρ(1)
.

The probability that a is chosen in state A is pm0 := (F (sm|A))2m. As

m→∞,

limm→∞ p
m
0 = limm→∞ (1− (1− F (sm|A)))2m

=
(

(1−π)
πρ(1)

) −f(1|A)
f(1|A)−f(1|B)

.

The last line follows because if limn(1 + xn)n = a and if limn
yn
xn

= z, then

limn(1 + yn)n = az. Now if we apply this by defining xn = F (sm|A)−F (sm|B)
F (sm|B)

,

and yn = −(1 − F (sm|A)), we get the expression for lim pm0 . Similarly, the

probability that policy b is chosen in state B, pm1 = 1 − (F (sm|B))2m. As

m→∞, this calculation yields:

limm→∞ 1− pm1 = limm→∞ (1− (1− F (sm|B)))2m

=
(

1−π
πρ(1)

) −f(1|B)
f(1|A)−f(1|B)

.

This completes the first part of the theorem. To show that
(

(1−π)
πρ(1)

)− f(1|A)
f(1|A)−f(1|B)

goes to 1 if f(1|A)
f(1|B)

goes to 0 is by taking the log of the expression
(

(1−π)
πρ(1)

)− f(1|A)
f(1|A)−f(1|B)

,

and using L’Hopital’s rule to show that this ln expression goes to zero. The

other part similarly follows.
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