LIMITED WILLPOWER

Yusufcan Masatlioglu University Michigan Daisuke Nakajima _{Otaru} University of Commerce Emre Ozdenoren London Business School

Higher School of Economics, 2014

In the standard theory,

Choices \Leftrightarrow Preferences

WEDGE

Choices $\stackrel{?}{\Leftrightarrow}$ Preferences

A wedge between choices and actual preferences

WEDGE

Choices $\stackrel{?}{\Leftrightarrow}$ Preferences

A wedge between choices and actual preferences

WEDGE

Such a wedge can be created by VISCERAL URGES

VISCERAL URGES

- drives,
- emotions,

e.g. hunger and sexual desire, e.g. anger and fear,

VISCERAL URGES

- drives,
- emotions,

- e.g. hunger and sexual desire,
- e.g. anger and fear,

From the evolutionary perspective, VISCERAL URGES are crucial for human beings:

- hunger protects us against malnutrition;
- anger protects us from exploitation by others;

Nowadays, VISCERAL URGES could harm us, e.g.,

- obesity,
- stage fright,

How to suppress and override our visceral urges?

Nowadays, VISCERAL URGES could harm us, e.g.,

- obesity,
- stage fright,

How to suppress and override our visceral urges?

Psychologists claim that $\ensuremath{\operatorname{WILLPOWER}}$ is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,

Psychologists claim that $\ensuremath{W\mathrm{ILLPOWER}}$ is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,
 - If you have done something requiring the self-control, it is less likely to exercise self-control in a different task.
 Baumeister et al (1994), Baumeister and Vohs (2003).
 Muraven (2011)

Psychologists claim that **WILLPOWER** is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,

If you have done something requiring the self-control, it is less likely to exercise self-control in a different task. Baumeister et al (1994), Baumeister and Volts (2003), Muraven (2013)

Psychologists claim that WILLPOWER is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,

 If you have done something requiring the self-control, it is less likely to exercise self-control in a different task.
 Baumeister et al (1994), Baumeister and Vohs (2003), Muraven (2011)

Psychologists claim that WILLPOWER is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,
 - If you have done something requiring the self-control, it is less likely to exercise self-control in a different task.
 Baumeister et al (1994), Baumeister and Vohs (2003), Muraven (2011)

Psychologists claim that WILLPOWER is

- required to suppress and override our visceral urges,
- more than just a fairy tale or a metaphor,
- not unlimited resource,
- the same resource applies to different tasks,
 - If you have done something requiring the self-control, it is less likely to exercise self-control in a different task.
 Baumeister et al (1994), Baumeister and Vohs (2003), Muraven (2011)

APPLICATION

Recent applied papers on willpower depletion

- Ozdenoren, Salant, and Silverman (2011)
- Ali (2011)
- Fudenberg and Levine (2012)

TODAY'S TALK

• Our goal is to provide a choice theoretic foundation for the willpower as a limited cognitive resource model.

- Provide a simple and tractable model,
- Temptation modelled as a constraint,
- Our characterization uses only choices,
- Identification of one's willpower and visceral urge intensity,

Three components:

Choosing an alternative from set A:

$$c(A) = \arg \max_{x \in A} \quad u(x)$$

Choosing an alternative from set A:

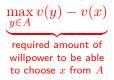
$$c(A) = \arg \max_{x \in A} \quad u(x)$$

Choosing an alternative from set A:

$$c(A) = \arg \max_{x \in A} \quad u(x)$$

Choosing an alternative from set A:

$$c(A) = \arg \max_{x \in A} \quad u(x)$$



Choosing an alternative from set A:

$$c(A) = \arg \max_{x \in A} \quad u(x)$$

$$\max_{y \in A} v(y) - v(x) \leq w$$
required amount of
willpower to be able
to choose x from A

 $c(A) = \arg \max_{x \in A} u(x)$ s.t. $\max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3

 $c(A) = \arg \max_{x \in A} u(x) \text{ s.t. } \max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3

 $\{gym, book\}$

 $c(A) = \arg \max_{x \in A} u(x) \text{ s.t. } \max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3

 $c(\{gym, book\}) = gym$

 $c(A) = \arg \max_{x \in A} u(x)$ s.t. $\max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3
watching tv	0	5

 $c(\{gym, book\}) = gym$ $\{gym, book, tv\}$

 $c(A) = \arg \max_{x \in A} u(x)$ s.t. $\max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3
watching tv	0	5

 $c(\{gym, book\}) = gym$ $c(\{gym, book, tv\}) = book$

 $c(A) = \arg \max_{x \in A} u(x)$ s.t. $\max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3
watching tv	0	5

 $c(\{gym, book\}) = gym$ $c(\{gym, book, tv\}) = book$

* Violation of IIA,

 $c(A) = \arg \max_{x \in A} u(x)$ s.t. $\max_{y \in A} v(y) - v(x) \le w$

Example: Assume willpower stock, w = 3,

	u	v
going to gym	10	1
reading book	5	3
watching tv	0	5

 $c(\{gym, book\}) = gym$ $c(\{gym, book, tv\}) = book$

★ Violation of IIA,

* The middle option is chosen, "Compromise Effect"

REPRESENTATION

$$c(A) = \mathop{\mathrm{argmax}}_{x \in A} \quad u(x) \ \text{ subject to } \quad \max_{y \in A} v(y) - v(x) \leq w$$

Two Extreme Cases • $w = \infty$ (Standard) NEVER give in temptation

• w = 0 (Strotz) ALWAYS give in temptation

Setup

- X: a finite set of alternatives.
- Two pieces of information: (\succeq, c)
 - Preferences
 - Choices

Setup

- X: a finite set of alternatives.
- Two pieces of information: (\succeq, c)
 - Preferences
 - Choices

Question: What class of (\succsim,c) can be explained by the Limited Willpower model?

AXIOMS

Axiom 1: \succeq is complete and transitive.

Axiom 2: If $x \succ c(A \cup x)$ then $c(A) = c(A \cup x)$.

Axiom 3: $c(A) \succeq c(B) \Rightarrow c(A) \succeq c(A \cup B) \succeq c(B)$.

AXIOMS

Axiom 1: \succeq is complete and transitive.

Axiom 2: If $x \succ c(A \cup x)$ then $c(A) = c(A \cup x)$.

Axiom 3: $c(A) \succeq c(B) \Rightarrow c(A) \succeq c(A \cup B) \succeq c(B)$.

AXIOMS

Axiom 1: \succeq is complete and transitive.

Axiom 2: If $x \succ c(A \cup x)$ then $c(A) = c(A \cup x)$.

Axiom 3: $c(A) \succeq c(B) \Rightarrow c(A) \succeq c(A \cup B) \succeq c(B)$.

AXIOMS

Axiom 1: \succeq is complete and transitive.

Axiom 2: If $x \succ c(A \cup x)$ then $c(A) = c(A \cup x)$.

Axiom 3: $c(A) \succeq c(B) \Rightarrow c(A) \succeq c(A \cup B) \succeq c(B)$.

AXIOMS

Axiom 1: \succeq is complete and transitive.

Axiom 2: If $x \succ c(A \cup x)$ then $c(A) = c(A \cup x)$.

Axiom 3: $c(A) \succeq c(B) \Rightarrow c(A) \succeq c(A \cup B) \succeq c(B)$.

A Result

Theorem 0

 (\succsim,c) satisfies Axioms 1-3 if and only if it admits the following representation:

$$c(A) = \arg \max_{x \in A} u(x) \text{ s.t. } \max_{y \in A} v(y) - v(x) \le w(x)$$

When w(x) = w?

An observation: $y \succ c(y,z) \Rightarrow z$ is more tempting than y $(y \succ z)$

When w(x) = w?

An observation: $y\succ c(y,z)\Rightarrow z$ is more tempting than y ($y\succ z$)

- $\circ t$ is more tempting than $y_{,i}$
- \circ x is not choosable over y_i ,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

- t is more tempting than y,
- x is not choosable over y,
- Then x is also not choosable t.

Desired Result

THEOREM 1

 (\succsim,c) satisfies Axioms 1-4 iff (\succsim,c) admits a Limited Willpower representation.

$$c(A) = \arg \max_{x \in A} u(x) \text{ s.t. } \max_{y \in A} v(y) - v(x) \leq w$$

NON-UNIQUENESS

If preferences and choices coincide $(c(x,y) = x \succ y)$, then

• No self-control problem

 $\blacktriangleright \quad 0 < v(x) - v(y)$

• Self-control problem exists but enough willpower

$$\blacktriangleright \quad 0 < v(y) - v(x) < w$$

v is not even unique in ordinal sense !!!

Non-Uniqueness

If preferences and choices coincide $(c(x,y) = x \succ y)$, then

No self-control problem

 $\blacktriangleright \quad 0 < v(x) - v(y)$

• Self-control problem exists but enough willpower

 $\blacktriangleright \quad 0 < v(y) - v(x) < w$

v is not even unique in ordinal sense !!!

NON-UNIQUENESS

If preferences and choices coincide ($c(x,y) = x \succ y$), then

No self-control problem

► 0 < v(x) - v(y)

• Self-control problem exists but enough willpower

$$\bullet \quad 0 < v(y) - v(x) < w$$

v is not even unique in ordinal sense !!!

Non-Uniqueness

If preferences and choices coincide ($c(x,y) = x \succ y$), then

No self-control problem

► 0 < v(x) - v(y)

• Self-control problem exists but enough willpower

$$\bullet \quad 0 < v(y) - v(x) < w$$

 \boldsymbol{v} is not even unique in ordinal sense !!!

A richer structure is needed !!!

LOTTERIES

A richer structure is needed !!!

LOTTERIES

WILLPOWER WITH LOTTERIES

- X: the finite set of potentially available alternatives
- Δ : the set of all lotteries on X
- $\mathcal{X}:$ the set of non-empty finite subsets of Δ
- \succeq : the preferences on X
- c: choices on $\mathcal X$

LINEAR LIMITED WILLPOWER

$$c(A) = \operatorname*{argmax}_{p \in A} \quad u(p)$$
 subject to
$$\max_{q \in A} v(q) - v(p) \leq w$$

where

- u, v are linear functions
- $\bullet w$ is a positive scalar.

Axiom A (Temptation Independence) Let $p \succ q$ and $\alpha \in [0, 1]$. i) If c(p,q) = p, c(p',q') = p' and $p' \succeq q'$, then $c(p\alpha p',q\alpha q') = p\alpha p'$ ii) If c(p,q) = q, c(p',q') = q' and $p' \succ q'$ then $c(p\alpha p',q\alpha q') = q\alpha q'$

Axiom B (Invariance to Replacement) If $c(p\alpha r, q\alpha r) = p\alpha r$ then $c(p\alpha r', q\alpha r') = p\alpha r'$ for any r'.

Axiom A (Temptation Independence) Let $p \succ q$ and $\alpha \in [0, 1]$. i) If c(p,q) = p, c(p',q') = p' and $p' \succeq q'$, then $c(p\alpha p',q\alpha q') = p\alpha p'$ ii) If c(p,q) = q, c(p',q') = q' and $p' \succ q'$ then $c(p\alpha p',q\alpha q') = q\alpha q'$

Axiom B (Invariance to Replacement) If $c(p\alpha r, q\alpha r) = p\alpha r$ then $c(p\alpha r', q\alpha r') = p\alpha r'$ for any r'.

Axiom C: (Conflict) There exist p and q such that $p \succ c(p,q)$.

Axiom D: (Consonance) For all $p \succ q$, there exists $\alpha > 0$ such that $p\alpha q = c(p\alpha q, q)$.

Axiom C: (Conflict) There exist p and q such that $p \succ c(p,q)$.

Axiom D: (Consonance) For all $p \succ q$, there exists $\alpha > 0$ such that $p\alpha q = c(p\alpha q, q)$.

Axiom C: (Conflict) There exist p and q such that $p \succ c(p,q)$.

Axiom D: (Consonance) For all $p \succ q$, there exists $\alpha > 0$ such that $p\alpha q = c(p\alpha q, q)$.

CHARACTERIZATION

MAIN RESULT

 (\succeq, c) satisfies Axiom 1-3 and "some technical axioms" iff (\succeq, c) admits a linear Limited Willpower representation with w > 0.

UNIQUENESS: If (u, v, w) and (u', v', w') represent (\succeq, c) then there exist scalars $\alpha > 0, \alpha' > 0, \beta, \beta'$ such that

$$u' = \alpha u + \beta, \quad v' = \alpha' v + \beta', \quad w' = \alpha' w$$

CHARACTERIZATION

MAIN RESULT

 (\succeq, c) satisfies Axiom 1-3 and "some technical axioms" iff (\succeq, c) admits a linear Limited Willpower representation with w > 0.

UNIQUENESS: If (u, v, w) and (u', v', w') represent (\succeq, c) then there exist scalars $\alpha > 0, \alpha' > 0, \beta, \beta'$ such that

$$u' = \alpha u + \beta, \quad v' = \alpha' v + \beta', \quad w' = \alpha' w$$

Can we reveal preferences from choices?

In the standard approach, preferences are revealed by choices.

$$x \succ y$$
 if $x = c(x, y)$

In the limited willpower, this is no longer true. It is possible that

$$x \succ y$$
 and $y = c(x, y)$

because of limited willpower (v(y) - v(x) > w)

Can we reveal preferences from choices?

In the standard approach, preferences are revealed by choices.

$$x \succ y$$
 if $x = c(x, y)$

In the limited willpower, this is no longer true. It is possible that

 $x \succ y$ and y = c(x, y)

because of limited willpower (v(y) - v(x) > w)

Can we reveal preferences from choices?

In the standard approach, preferences are revealed by choices.

$$x \succ y$$
 if $x = c(x, y)$

In the limited willpower, this is no longer true. It is possible that

$$x \succ y$$
 and $y = c(x, y)$

because of limited willpower (v(y) - v(x) > w)

Take two points x and y, and consider a mixture of them,

•
$$v(y) - v(\alpha x + (1 - \alpha)y) = \alpha (v(y) - v(x)),$$

• Self-control problem gets smaller

Given c, we define revealed preference, \succ^c ,

 $x \succ^c y$ if one of the following is true

- x = c(x, y) and no mixture can reverse the choice,
- y = c(x, y) and some mixture can reverse the choice,

Given c, define \succ^c

 $x \succ^c y$ if one of the following is true

•
$$x = c(x, y)$$
 and $\nexists \alpha \in (0, 1)$ such that $y \in c(x \alpha y, y)$,
• $y = c(x, y)$ and $\exists \alpha \in (0, 1)$ such that $x \alpha y = c(x \alpha y, y)$.

PROPOSITION

If (\succeq, c) admits a linear willpower representation, then $\succeq = \succeq^c$.

Given c, define \succ^c

 $x \succ^c y$ if one of the following is true

•
$$x = c(x, y)$$
 and $\nexists \alpha \in (0, 1)$ such that $y \in c(x \alpha y, y)$,
• $y = c(x, y)$ and $\exists \alpha \in (0, 1)$ such that $x \alpha y = c(x \alpha y, y)$.

PROPOSITION

If (\succsim,c) admits a linear willpower representation, then $\succsim=\succsim^c$.

MODELING OPTIONS

COLD STATE

Menu Preferences

Choose among menus

Existing Literature on Self-Control HOT STATE

CHOICES

Choose from the menu

Our Model

PREFERENCE FOR COMMITMENT

Costly Self-control (GP)

• In COLD STATE, preference for commitment,

Limited Willpower (MNO)

• In HOT STATE, preference for commitment,

PREFERENCE FOR COMMITMENT

Costly Self-control (GP)

• In COLD STATE, preference for commitment,

Limited Willpower (MNO)

• In HOT STATE, preference for commitment,

PREFERENCE FOR COMMITMENT

Costly Self-control (GP)

• In COLD STATE, preference for commitment,

Limited Willpower (MNO)

• In HOT STATE, preference for commitment,

CONCLUSION

- Provide a limited willpower model,
- Our characterization uses only choices,
- Temptation modeled as a constraint,
- Model is simple and tractable,
 - A monopolist facing a consumer with limited willpower
 - More complicated contracts
 - Qualitatively different results (Strotz or Costly Self-control)
 - "Compromise Effect" as a market outcome

THANK YOU