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This situation calls for a fast generator of stable random variables. However,with a few exceptions, there are no analytic expressions for the inverse F�1 ofthe stable distribution function and the inverse transform method cannot beused. Chambers et al. (1976) constructed a direct method based on (3.2) and(3.3). In what follows, we give proofs to these equalities (Theorem 3.1).The importance of this result may be emphasized also by the fact that it isused, for example, to generate Linnik's random variables (see Devroye (1990))and discrete stable and Linnik's random variables (see Devroye (1993)). More-over, analytical properties of the functions used in this equality have been ex-tensively studied by Buckle (1994).2 �{Stable DistributionsThe stable distribution can be most conveniently described by its characteristicfunction (cf). The following formula is derived from the so{called L�evy repre-sentation of the cf of an in�nitely divisible law, given in L�evy (1934) (for detailssee Hall (1981)).De�nition 2.1 A random variable X is �{stable if and only if its charac-teristic function is given bylog �(t) =8<:���jtj�f1� i�sign(t) tan ��2 g+ i�t; � 6= 1;��jtjf1 + i�sign(t) 2� log jtjg+ i�t; � = 1; (2.1)where � 2 (0; 2], � 2 [�1; 1], � > 0, � 2R.Since (2.1) is characterized by four parameters we will denote �{stable dis-tributions by S�(�; �; �) and writeX � S�(�; �; �) (2.2)to indicate that X has the stable distribution with the characteristic exponent(index) �, scale parameter �, skewness � and location parameter �. When � = 1and � = 0 the distribution is called standard stable.The canonical representation (2.1) has one disagreeable feature. The func-tions �(t) are not continuous functions of the parameters determining them,2



they have discontinuities at all points of the form � = 1; � 6= 0. However, asZolotarev (1986) remarks, setting�1 = (� + ��� tan ��2 ; � 6= 1;�; � = 1; (2.3)yields the expressionlog �(t) =8<:���fjtj� � it�(jtj��1� 1) tan ��2 g+ i�1t; � 6= 1;��jtjf1 + i�sign(t) 2� log jtjg+ i�1t; � = 1; (2.4)which is a function jointly continuous in � and �. The drawback of this form isthat �1 does no longer have the natural interpretation as a location parameter.Most authors, therefore, use the form (2.1) of the cf.Another form of the cf, whose use can be justi�ed by considerations of ananalytic nature (see Zolotarev (1986)), is the following.De�nition 2.2 A random variable X is �{stable i� its characteristic func-tion is given bylog �(t) = 8<:���2 jtj� expf�i�2sign(t)�2K(�)g+ i�t; � 6= 1;��2jtjf�2 + i�2sign(t) log jtjg+ i�t; � = 1; (2.5)where K(�) = � � 1 + sign(1� �) = (�; � < 1;�� 2; � > 1: (2.6)The parameters �2 and �2 are related to � and �, from the representation (2.1),as follows. For � 6= 1, �2 is such thattan��2�K(�)2 � = � tan ��2 ; (2.7)and the new scale parameter�2 = � �1 + �2 tan2 ��2 �1=(2�) : (2.8)For � = 1, �2 = � and �2 = 2��.The probability density functions (pdf) of stable random variables exist andare continuous but, with a few exceptions, they are not known in closed form.The exceptions are 3



� the Gaussian distribution: S2(�; 0; �) = N(�; 2�2),� the Cauchy distribution: S1(�; 0; �),� the L�evy distribution: S1=2(�; 1; �),� and the case obtained from the latter by using (2.13): S1=2(�;�1; �).Zolotarev (1986) gives integral representations of the pdf's for all values of theparameters � and �. We present his result in terms of the distribution functions(df).Proposition 2.1 (Zolotarev (1986), Remark 1, page 78). Let�(�) = sign(1 � �);0 = ��2�2K(�)� ;C(�; �2) = 1 � 14(1 + �2K(�)=�)(1 + �(�));U�(; 0) = �sin�( � 0)cos  ��=(1��) cos( � �( � 0))cos  ; (2.9)and U1(; �2) = �2 + �2cos  exp� 1�2 ��2 + �2� tan � : (2.10)Then the df F (x; �; �2) of a standard stable random variable, whose cf is of theform (2.5), can be written as follows� if � 6= 1 and x > 0 thenF (x; �; �2) = C(�; �2) + �(�)� �2Z0 exp[�x�=(��1)U�(; 0)]d; (2.11)� if � = 1 and �2 > 0 thenF (x; 1; �2) = 1� �2Z��2 exp[�e�x=�2U1(; �2)]d: (2.12)4



The cases � 6= 1, x < 0 and � = 1, �2 < 0 can be reduced to the corre-sponding cases � 6= 1, x > 0 and � = 1, �2 > 0 with the help of the followingequality F (�x; �; �2) + F (x; �;��2) = 1; (2.13)which is valid, for both forms: (2.1) and (2.5), for any real x and any admissableparameters � and �2 (or �).3 Computer Generation of �{Stable RandomVariablesThe complexity of the problem of simulation of sequences of stable randomvariables results from the fact that there are no analytic expressions for theinverse F�1 of the df. The only exceptions are the Gaussian, the Cauchy andthe L�evy distributions, for which simple methods of simulation have been found.A solution to the problem was found by a path started in the article byKanter (1975), in which a direct method was given for simulating S�(1; 1; 0)random variables, for � < 1. It turned out that this method was easily adoptedto the general case. Chambers et al. (1976) were the �rst to give the formulas.However, they did not supply a proof and only gave reference to an article byZolotarev (1966) where expressions of the type (2.11) and (2.12) could be found.The lack of explicit proofs of these formulas has led to some inaccuracies in theliterature. In this note, we want to clarify the situation and present the proofs.Lemma 3.1 Let 0 and U�(; 0) be de�ned as in Proposition (2.1). For� 6= 1 and 0 <  < �2 , X is a S�(1; �2; 0) random variable (in representation(2.5)) i� for x > 0,1� �2Z0 exp[�x�=(��1)U�(; 0)]d = 8<:P (0 < X � x); � < 1;P (X � x); � > 1: (3.1)Proof: Case of 0 < � < 1. >From (2.11) we haveF (x; �; �2) = P (X � x)= 1 � �22 + 1� �2Z0 exp[�x�=(��1)U�(; 0)]d5



= 1 � �22 + P (0 < X � x);because for � < 1, 1��22 = P (X � 0) (see Zolotarev (1986), Remark 2, page 79).Case of 1 < � � 2. >From (2.11) we haveF (x; �; �2) = P (X � x)= 1� 1� �2Z0 exp[�x�=(��1)U�(; 0)]d= 1� P (X � x):This completes the proof. 2Theorem 3.1 Let 0 be de�ned as in Proposition (2.1). Let  be uniformlydistributed on (��2 ; �2 ) and W be an independent exponential random variablewith mean 1. Then� for � 6= 1 X = sin�( � 0)(cos )1=� �cos( � �( � 0))W �(1��)=� ; (3.2)is S�(1; �2; 0) and� for � = 1 X = (�2 + �2) tan  � �2 log�W cos �2 + �2� (3.3)is S1(1; �2; 0)for the representation (2.5).Proof: When  > 0 then the right hand side of (3.2) is positive and can beexpressed as �a()W �(1��)=� ; (3.4)where a() = �sin�( � 0)cos  ��=(1��) cos( � �( � 0))cos  : (3.5)6



Case of 0 < � < 1. Equation (3.2) implies that X > 0 i�  > 0. Since1��� > 0, we can writeP (0 < X � x) = P (0 < X � x;  > 0)= P (0 < (a()=W )(1��)=� � x;  > 0)= P (W � x�=(��1)a();  > 0)= E  exp[�x�=(��1)a()]1f>0g= 1� �2Z0 exp[�x�=(��1)a()]d:>From Lemma 3.1 and (2.13) we conclude that X � S�(1; �2; 0).Case of 1 < � � 2. Since ��1� > 0, for x > 0 we can writeP (X � x) = P (X � x;  > 0)= P ((a()=W )(1��)=� � x;  > 0)= P ((W=a())(��1)=� � x;  > 0)= P (W � x�=(��1)a();  > 0)= E  exp[�x�=(��1)a()]1f>0g= 1� �2Z0 exp[�x�=(��1)a()]d:>From Lemma 3.1 and (2.13) we conclude that X � S�(1; �2; 0).Case of � = 1. For �2 = 0, the right hand side of (3.3) reduces to �2 tan whose distribution is Cauchy (in representation (2.5)). When �2 6= 0, it can beexpressed as �2 log�a1()W � ; (3.6)where a1() = �2 + �2cos  exp� 1�2 (�2 + �2) tan � : (3.7)We have for �2 > 0,P (X � x) = P (�2 log(a1()=W ) � x)= P (W � e�x=�2a1())= E  exp[�e�x=�2a1()]7



= 1� �2Z��2 exp[�e�x=�2a1()]d:>From (2.12) and (2.13) we conclude that for all �2, X � S1(1; �2; 0). Thiscompletes the proof. 2Applying this theorem we can easily construct a method of computer gener-ation of a skewed random variable X � S�(1; �; 0), in the representation (2.1).For � 2 (0; 2] and � 2 [�1; 1]:� generate a random variable V uniformly distributed on (��2 ; �2 ) and anindependent exponential random variable W with mean 1;� for � 6= 1 computeX = S�;� � sin(�(V +B�;�))(cos(V ))1=� ��cos(V � �(V +B�;�))W �(1��)=� ; (3.8)where B�;� = arctan(� tan ��2 )� ;S�;� = h1 + �2 tan2 ��2 i1=(2�) ;� for � = 1 computeX = 2� �(�2 + �V ) tan V � � log�W cosV�2 + �V �� : (3.9)B�;� accounts for the parameter change from �2 to � and takes place of 0 in(3.2). S�;� accounts for the parameter change from �2 to � (see (2.8)).Formula (3.8) was initially presented by Janicki and Weron (1994). However,they gave an incorrect form for C�;� (the denominator is 1�j1��j instead of �,Formula (3.5.2), page 50), which corresponds to our B�;�, and a computationallymore complicated form for D�;� (our S�;�). They also did not provide theformula for � = 1.Chambers et al. (1976) give a formula ((2.3) on page 341) for � 6= 1 equiv-alent to (3.8), in the representation (2.5). Their formula for � = 1 ((2.4) on8
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