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1. Introduction

The provision of transport infrastructure is one of the oldest and most basic government activ-
ities. The roads built by the Inca in South America or by the Romans in Europe bear testimony
to this fact. Indeed, any known civilization has devoted resources to the construction of roads
presumably with the objective to unlock the welfare gains from regional integration.1 On av-
erage, OECD countries spend about 1% of GDP on inland transportation infrastructure and
maintenance. This amounts to about 3% of countries’ public budgets. Emerging or transition
economies spend up to 10% of their budgets on transport infrastructure.2

A large mostly empirical literature demonstrates the important role of infrastructure on trade
costs, trade flows, and welfare. It makes massive efforts to address the suspected endogeneity
of infrastructure but does not model the processes that determine these costs. So, in their
authoritative handbook chapter, Redding and Turner (2014) ask for “further research ... exam-
ining the political economy of transport infrastructure investments”. The present paper is a first
step towards endogenizing the spatial distribution of transport infrastructure.3

In this paper we focus on land-borne transportation, by far the most important mode for in-
tracontinental trade in the EU or in North America. Much transport infrastructure spending
is decided decentrally, in particular in the EU, where only about 1% of total spending is at
the Union level and central planning is limited to a small number of projects. For this reason,
we assume that welfare-maximizing national governments allocate infrastructure spending over
space in a non-cooperative fashion. However, while political space is fragmented, consumers
demand goods from all locations in our continuous, linear two-country economy. We show that,
in such a setup, there is inefficiently low global investment in infrastructure. Underinvestment is
particularly severe in border regions. The reason is that national governments do not internalize
the benefits from reductions in domestic transportation costs that accrue to foreign consumers,
and these unaccounted benefits are largest the closer a location is to a national border.

As a consequence, trade across national borders entails higher transportation costs than trade
within countries, holding bilateral distances and market sizes constant. This effect materializes
even in the absence of discrete border costs caused by tariffs or non-tariff measures. However,
the effect is magnified by the existence of such costs. The endogenous emergence of broad
border zones may contribute towards explaining the empirical fact that international borders tend
1A fascinating account of the history of road construction and operation is provided by Lay (1992).
2ITF-OECD (2012), p. 4. These investment costs pale in comparison to total social road transport costs
(including time costs and externalities), which have been estimated to amount to 20-25% of GDP (Persson and
Song, 2010).
3We formalize the non-cooperative behavior of welfare-maximizing national governments in continuous space.
However, we argue that our main results generalize to the median voter model.
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to restrict international trade much more severely than what observable border costs together
with plausible trade elasticities would suggest (Anderson and van Wincoop, 2003).

We employ data on intra-EU trade flows and transportation costs to calibrate our model and
illustrate our theoretical arguments. We use the setup to simulate a data set of trade flows,
and apply a conventional gravity model. The obtained border effect significantly overestimates
the true border costs; about half of the bias is due to omitting infrastructure; the second half is
a statistical artefact that arises from the high correlation between distance and border. Hence,
endogenous infrastructure investment can explain part of the border effect.

In an intermediate step of our theoretical analysis, we propose a useful mapping between the
spatial distribution of infrastructure spending within an interval into transportation costs between
the two endpoints of this interval. This mapping is consistent with the concave relationship
between geographical distance and transport costs documented in the data. The link between
infrastructure investment over space and transportation costs is shaped by the elasticity of
substitution between investment at different locations. We embed this structure into a simple
model of intra- and international trade, where each location produces a unique differentiated
product which is subject to transportation costs.

We find that the optimal infrastructure investment at some point in space is not only determined
by local conditions at that point, but also – and predominantly – by the situation in other
locations that produce and demand goods which transit through that point. The enlargement
of a country – e.g., the reunification of Germany – leads to a reallocation of investment away
from formerly central regions towards the former border. A higher degree of substitutability
between investments at different addresses has an ambiguous effect on investment while a higher
elasticity of substitution between goods produced at different location reduces investment.

Using real data on EU trade flows, we provide econometric support for the role of transport
infrastructure in shaping the border effect. Employing road distance or, even better, travel time,
as proxies for transportation costs instead of great-circle distance, the estimated trade-inhibiting
effect of the border falls by about a quarter. We provide various sensitivity checks to make sure
that our empirical result is not driven by reverse causation.

We extend our analysis by adding a non-contiguous country which supplies and demands goods
to and from our two-country continent. We find that an increase in the economic mass of this
overseas trading partner induces a reallocation of spending towards coastal regions and away
from the hinterland, strengthening the border effect.

Our main result is robust to a number of model variations. First, we discuss how privately
operated toll roads would change our results. Second, we study a special case where governments
outsource the design and operation of roads to domestic private monopolists but regulate the fee
system. These firms care only about profits and not about welfare. However, the central issue
leading to inefficient investment variation persists: the monopolists underinvest more in locations
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close to the border where the positive externality on foreign infrastructure operators is largest.
Third, we argue that allowing for labor mobility does not undo underinvestment at the border
relative to first best. However, whether the non-cooperative equilibrium features a bimodal
investment pattern depends on the size of discrete border costs. Fourth, we demonstrate that
our central planner results are similar to the outcome expected from a median voter model.

Our paper is related to at least four important strands of literature. First, it connects with
papers that study the importance of geographical frictions and transportation costs for trade
and welfare. Typically, the literature has treated those costs as exogenous. Limao and Venables
(2001) find that up to 60 percent of the cross-country variation in transport costs is due to
transport infrastructure and that high cost of land-borne transportation is a more relevant trade
barrier than the costs of maritime transportation. Venables (2005) argues that infrastructure
explains a larger share of spatial income inequality than sheer geography. Many existing pa-
pers assume that countries (or regions) do not have a geographical extension. Recent work
provides more spatial detail, but continues to treat infrastructure as exogenous. Cosar and
Demir (2014) show that the upgrading of motorways in Turkey significantly increases exports of
transport-intensive goods of landlocked cities. Allen and Arkolakis (2014) incorporate realistic
topographical features into a spatial model of trade. They find that the introduction of the US
interstate highway system has reduced the costs of a coast-to-coast shipment by about a third.
Duranton et al. (2014) use data on US interstate highways to show that highways within cities
cause them to specialize in sectors that have high weight to value ratios. Using a multi-region
general equilibrium model of trade, Donaldson (2014) and Donaldson and Hornbeck (2015) an-
alyze the welfare gains from railroads in India and the United States, respectively. They find that
improved market access through reduced transport costs creates trade and generates welfare
gains, but that it also leads to trade diversion. Behar and Venables (2011) and Redding and
Turner (2014) provide excellent surveys. While they cite empirical work on the determinants of
transportation costs, they do not provide theoretical references on their endogenous emergence.

Second, our paper is related to a small literature that endogenizes transportation costs, usually
by introducing a proper transportation sector. Using an economic geography model, Behrens and
Picard (2011) show that the prices for transporting differentiated goods increase in the degree
of spatial specialization of the economy and that this channel dampens core-periphery patterns.
While their model has a competitive transport sector, Hummels et al. (2009) provides evidence
that monopolistic market structure in the transport sector restricts trade. These papers do not
analyze the endogenous emergence of road infrastructure.

Third, our paper is related to literature that jointly considers international and intranational
aspects of trade. Courant and Deardorff (1992) emphasize the importance of trade within
countries for trade patterns across countries. Rossi-Hansberg (2005) studies the effects of
small border costs on the regional distribution of workers within a country and assesses the
implications of the equilibrium population distribution on intra- versus international trade flows.
However, his focus is not on infrastructure investment.
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Fourth, our paper relates to work on the border puzzle. Transport costs are usually related to
geographical distance while the border effect is attributed to some lumpy cost that materializes
when crossing a border. Anderson and van Wincoop (2003) estimate that the US-Canadian
border reduces international trade relative to intranational trade by a factor of 4.7.4 Explanations
for fixed border costs abound. Among other things, they are related to informational costs
(Casella and Rauch, 2003), networks (Combes et al., 2005), or exchange rates (Rose and van
Wincoop, 2001). Border effects exist also within countries, where the above explanations do
not help.5 Our setup shows that border effects can arise even in the absence of explicit costs
at the border.

The structure of the paper is as follows. Section 2 presents some stylized facts on the trans-
portation sector that inform our modeling choices. Section 3 explains our formulation of the
mapping between the spatial distribution of infrastructure investment and transport costs. Sec-
tion 4 sets up the general equilibrium environment which motivates intra- and international
trade and analyzes the optimal infrastructure investment schedule in a closed economy. Section
5 moves to a setting of two symmetric open economies and derives our core results on the
endogenous emergence of border regions. Section 6 provides empirical evidence supporting our
analysis while Section 7 discusses several extensions. Section 8 concludes.

2. Stylized facts

Here, we present some stylized facts on transportation costs and transport infrastructure.

Fact 1: Transport costs vary across space. Direct data on transportation costs is scarce.
Representative marginal costs for freight transportation amount to 1.54 Euro per kilometer on
average around 2008 in the United Kingdom. Fuel (including taxes) and travel time account
for 44% and 38% of the total, respectively (Braconier et al., 2013). Combes and Lafourcade
(2005) provide generalized transportation cost data for a sample of 8742 French city pairs in
1993. Average road transportation costs are 5.16 French Francs per kilometer.6 The data
also reveals a strong degree of variation in bilateral transportation costs: transportation costs

4Prior to Anderson and van Wincoop (2003), McCallum (1995) compares trade flows within Canada to flows
between Canadian provinces and U.S. states, controlling for distance and regional GDPs. Everything else equal,
crossing the border reduces trade by a factor as high as 22. For Europe, Nitsch (2000) finds that on average
intranational trade is about 10 times higher than international one. Nitsch arrives at his results after controlling
for cultural proximity (language), along other conventional gravity covariates. Wei (1996) constructs measures for
imports of countries to themselves and compares this with imports from a statistically identical foreign country.
He finds that the former magnitude is 2.5 times larger than the latter. Helliwell (1998) offers a comprehensive
overview of the pre Anderson and van Wincoop state of the econometric literature.
5Okubo (2004) shows a border effect for trade between Japanese regions, Wolf (2000) for the US, and Combes
et al. (2005) for their sample of French departments.
6Assuming an inflation rate of 3% a year and applying the FF/Euro conversion rate of 6.55957, this would amount
to about 1.25 Euro in 2008 current prices.
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Figure 1 – Transportation costs and distance: a concave relationship
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Notes. Generalized transportation costs between capitals of French departements in French Francs (1993) as
a function of geographical distance in km.

at the 5% percentile are 4.54 while at the 95% percentile they are 5.86 per kilometer. The
standard deviation is 0.43. Looking at the average per kilometer cost of transiting one of the
94 French departments,7 one discovers an even higher standard deviation of 1.12. Only part of
this variation is explained by variables such as economic activity, density, or topography.8

Fact 2: Transport costs are non-convex in distance. Usually, in economic geography models
(Fujita et al., 1999), transportation costs are modeled as exponential functions of distance.9

However, the data reject convexity. Figure 1 provides an illustration based on data by Combes
and Lafourcade (2005). Regressing the log of transportation costs between capitals of French
départements on the log of geographical distance reveals an elasticity of 0.90 with a standard
error of 0.02. The hypothesis of the elasticity being equal to unity is rejected at the 1% level.10

7To obtain a measure of transit costs, we average total variable transport costs per kilometer between neighboring
departements, using the neighbors’ area as weights.
8In Appendix B (Table .1), we relate average transit costs to GDP, area and population of the respective depart-
ment, the ruggedness of territory, and to geographical remoteness. We find that average transportation costs are
higher in geologically difficult, less densely populated and poorer departments. Everything else equal, they are also
higher in less central regions. Geography explains about 16% of transport cost variation; adding GDP, area and
population drives the explanatory power of the model up to 58%. Hence, such a ‘naive’ model leaves about 40%
of variance unexplained.
9See McCann (2005) for criticism.

10Using robust regression methods to punish outliers leads to an elasticity of 0.92, still different from 1.00 at the
1% level. The same holds true if one restricts the sample to distances below 200, 150 or 100 km.
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Table 1 – Intercontinental merchandise trade by transport mode: NAFTA and EU

North America French intra-EU trade
value weight value weight

bn. USD % mio. tons % bn. EUR % mio. tons %
Truck 557 61 187 29 338 69 200 59
Rail 131 14 134 21 15 3 15 4
Air 45 5 1 0 22 4 0 0
Water 81 9 210 32 70 14 77 23
Pipeline 63 7 106 16 n.a. n.a. n.a. n.a.
Other 40 4 9 1 45 9 45 13
Total 918 100 646 100 491 100 336 100

Notes: Data refer to 2010 (except French quantity information: 2006). Sources:

US department of transportation, Freight Facts and Figures 2011, Table 2.8.,

www.ops.fhwa.dot.gov\freight\freight_analysis\nat_freight_stats\docs\11factsfigures\index.htm
and Commissariat du development durable, www.statistiques.developpement-

durable.gouv.fr\transports\873.html.

Fact 3: Infrastructure investment and transportation costs are closely related. A large
empirical literature, already discussed in the introduction, establishes a close link between infras-
tructure investment, transportation costs, and the benefits of economic integration; see Limao
and Venables (2001) on cross-country evidence, Allen and Arkolakis (2014) or Duranton et al.
(2014) on US interstate highways, Donaldson (2014) and Donaldson and Hornbeck (2015) on
railroads in India and the US, respectively, or Cosar and Demir (2015) on roads in Turkey.

Fact 4: Intracontinental trade flows are mostly land-borne. Table 1 reports data for mer-
chandise trade within NAFTA and Europe. In 2010, between 72 and 75% of the value of total
regional trade is transported on roads or railways. Measured by tonnage, the shares are lower as
much bulk transportation is water-borne. While the importance of air-borne traffic is increasing,
it still is almost irrelevant in intracontinental trade.

Fact 5: Transport infrastructure is publicly provided. Infrastructure and maintenance spend-
ing on roads amounts to about 1% of GDP across OECD countries (average across 2001-
2009).11 Countries with difficult territory (such as Japan, Switzerland or Italy) have higher than
average spending. Almost all spending on roads and railways is financed by governments, even
if private public partnership agreements are becoming increasingly popular.

11OECD Economic Outlook 91 database. There is some disagreement about measurement; the Congressional
Budget Office puts total public spending for transportation and water infrastructure between 1.2% and 1.5% of
GDP in the 1956-2007 period.
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Fact 6: Regional governments influence interregional infrastructure projects substantially.
Within countries, there is a substantial amount of centralization of infrastructure planning and
spending. Nonetheless, local governments matter, too. In the US, about 90% of all spending
on infrastructure and equipment falls on the local or state level, but federal transfers have
become quite important over time (Congressional Budget Office, 2010). In Europe, member
states decide almost exclusively on their own about transport infrastructure investment projects.
There is some coordination at the Union level through the so called Trans-European Transport
Network, but the budget has been limited to about 1 billion Euro per year over the 2007-2013
spending period. This is less than 1% of overall spending on infrastructure in the EU (120 billion
Euro).12

Fact 7: Distance elasticities and border effects in gravity models. A voluminous empirical
literature finds that geographical distance restricts trade flows; see Head and Mayer (2014).
In their meta analysis across appropriately specified gravity models, the authors find a median
elasticity of trade flows with respect to great circle distance of about -1.1 and a median border
effect (i.e., the trade inhibiting effect of a border as compared to trade within a country) of
-1.6. In our empirical application using very recent European data, the distance elasticity is also
-1.1, but the border effect is -0.8.13

3. Modeling transportation costs

Models of international trade and economic geography typically employ Samuelson’s (1952)
iceberg trade costs assumption: in order to receive one unit of the good at some location x ,
T (x, z) ≥ 1 units of that good have to leave the factory at location z.14 A share 1−T (x, z)−1

of the good ‘melts’ in transport; the share T (x, z)−1 arrives at x when one unit of the good
is shipped at z. This formulation represents a dramatic simplification (McCann, 2005). But
it has proved convenient, because it makes the introduction of a specific transportation sector
redundant.

In this paper, we stick to the iceberg formulation, but we let transportation costs between
two addresses x and z depend on cumulative infrastructure investment. Public infrastructure
investment refers to the process of investing some resource at specific locations s with the
aim of reducing transportation costs.15 We assume that the set of geographic locations, S,

12http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/site/en/abouttent.htm. In the period 2014-
2020, centralized spending rises about threefold. However, this still keeps decentralized spending at about 97% of
total spending.
13We describe the data, methodology and results in Section 6 but mention our findings here, because they will
inform the numerical illustrations of our theory.
14A popular specification in continuous space is T (x, z) = ea|x−z |, with a > 0; see Krugman (1991) or Fujita et
al. (1999).
15Our model is static; hence, we use the terms infrastructure investment and stock of infrastructure interchangeably.
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is given by an interval, [0, s̄], where s̄ characterizes the geographical size of the economy. In
contrast to a circular economy, the linear specification appears preferable since it features a
natural periphery.16

We model the effectively available stock of infrastructure over some interval [x, z ] ∈ S using a
constant elasticity of substitution aggregator function

I (x, z) =

[∫ z

x

i (s)1−δ
ds

] 1
1−δ

, δ > 1, x ≤ z, (1)

where i (s) is the level/stock of infrastructure at location s ∈ [x, z ] and δ > 1 is a constant
technology parameter (which will turn out to be the elasticity of substitution between invest-
ments at different locations). I (x, z) increases in distance. This formulation has the natural
implication that spreading a constant investment budget B over increasing distance z−x lowers
the available stock of I (x, z) . Note also that if i(s) is equal to zero on some subset (with a
positive measure) of [x, z ], then the available stock of infrastructure over the whole interval
[x, z ] is zero.

The costs of transporting a product from z to x is linked to infrastructure by

T (x, z) =

(
1 +

1

δ − 1
|I (x, z)|1−δ

)γ
, δ > 1, γ > 0, x ≤ z. (2)

Transportation costs are symmetric in the sense that delivering a product from x to z costs the
same as delivering a product from z to x . The parameter γ governs the effect of the total stock
of infrastructure on transportation costs.

The choice of functional forms (1) and (2) proves convenient, as will become transparent below.
Moreover, the formulation has properties long discussed (but rarely formally modelled in a general
equilibrium context) by transport economists (Winston, 1985, or Gramlich, 1994).

Lemma 1 Generalized iceberg trade costs T (x, z) have the following properties:

(i) T (x, z) ≥ 1 with T (x, x) = 1 and T (x, y)T (y , z) ≥ T (x, z).

(ii) T (x, z) = (1 + a|z − x |)γ, if i (s) is a constant ı̄ over the interval [x, z ], and a = ı̄1−δ/ (δ − 1).

(iii) T (x, z) =∞, if i (s) = 0 on some subset (with a positive measure) of [x, z ].

(iv) T (x, z) is increasing in distance: i.e. for fixed x a more distant location z results in higher
transportation costs. Moreover, if i(s) is a differentiable function on S, T (x, z) is concave
in distance if the distance-induced increment to the trade cost gradient is outweighed by
an improvement in infrastructure. That is, if (γ − 1) [a (z)]2

/ (T (x, z))1/γ
< i ′ (z) i (z)−δ

where a (z) = i (z)1−δ
/ (δ − 1).

16Unlike in a symmetric circular economy, in a linear economy, symmetry in terms of endowments or available
technologies does not entail symmetry in infrastructure investments.
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(v) The (interregional) elasticity of substitution between infrastructure investment at different
locations is 0 < 1/δ < 1, so that investments at different locations are gross complements.

(vi) Investment smoothing property: if investment costs do not vary across locations, then the
cost-efficient way to achieve some exogenous target level of transportation costs involves a
flat spatial investment profile

i (s) =
{

(z − x) /
[
(δ − 1)

(
T̄ 1/γ − 1

)]}1/(δ−1)
.

where T̄ > 1 is the target level of iceberg transportation costs.

Proof The first three properties directly follow from the definition of the trade costs in
(2). The last three properties are proved in Appendix A.

Property (i) establishes that, for any x, y , and z , the triangle inequality holds: T (x, y)T (y , z) ≥
T (x, z) (the strict inequality holds, if x , y , and z represent different locations). So, it is cheaper
to transport products directly to a destination address, rather than through some intermediate
address.

Property (ii) shows that equation (2) collapses to the specification almost exclusively used in
empirical gravity models (with a = 1); see Head and Mayer (2014). Our specification also allows
for concavity of transportation costs with respect to distance documented in the data. Iceberg
transportation costs are concave in distance, as long as the component of dT (x, z) /dz driven by
variation in infrastructure investment outweighs the pure distance component of dT (x, z) /dz

(see property (iv) in the above lemma). Hence, in general, whether T (x, z) is concave in
distance depends on the spatial allocation of infrastructure investment and the values of γ and
δ.

Properties (v) and (vi) exploit an isomorphism between (2) and the usual representation of utility
in an optimal growth model. The parameter δ measures the ease with which infrastructure
investment at some address can substitute for investment at another place. The restriction
δ > 1 ensures that investments at different places are gross complements: investment at some
address makes investment at some other place more worthwhile, which seems realistic and is
consistent with the data.17

4. Infrastructure investment and intraregional trade

In a first step, we incorporate our modeling of transportation costs and infrastructure into a
simple model of intranational trade. Later we introduce international trade.

17We do not allow for incremental transport costs incurred at address s to depend on the volume of traffic transiting
through s. Actually, in equilibrium, the contrary will hold: more traffic at s will encourage the planner to invest
more in infrastructure, thereby driving down the gradient of T. This lowers the incremental trade costs at s for all
units of goods that transit through s.

11
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4.1. Geographical space and goods space

We assume that, at each location s ∈ S, there is a representative household who inelastically
supplies m (s) > 0 units of labor. The total endowment of labor in the economy is then equal
to
∫
s∈Sm(s)ds, which we define as L.

Each location produces both a homogeneous agricultural and a spatially differentiated indus-
trial good. Consumers consume both goods and perceive industrial goods produced at specific
locations as imperfect substitutes. There are no costs of transporting the agricultural good.
Moreover, the agricultural good serves as an input into infrastructure provision.18 Each location
s is home of consumers and producers. We denote addresses of consumers by x and addresses
of producers by z.

We assume that locations may differ with respect to topological circumstances. Specifically, in-
frastructure at address s is produced according to a linear production function i (s) = b (s) /q (s),
where b (s) denotes the input of the agricultural good used for infrastructure investment, and
1/q (s) > 0 measures the rate at which that resource is transformed into infrastructure. We
restrict q (s) to be continuously differentiable. Feasibility of an investment policy i (s) requires∫
s∈S q (s) i (s) ≤ B, where B is the amount of agricultural good invested in infrastructure and
will be endogenously determined by government policy.

4.2. Consumption

The utility function of a representative household at location x is a monotone transformation of a
Cobb-Douglas aggregate over the homogeneous agricultural good and a Dixit-Stiglitz aggregate
over industrial goods:

U (x) =
[
cA (x)

] αρ
(1−α)(1−ρ)

(∫
z∈S

c I (x, z)ρ dz

) 1
1−ρ

, (3)

with α ∈ (0, 1) , 0 < ρ < 1, where cA (x) denotes the total quantity of the agricultural good
consumed at address x and c I (x, z) is the quantity of an industrial variety produced at address
z and consumed at x .19

Let Y n (x) denote household x ′s net income in terms of a numeraire to be defined below. Then,
the budget constraint of household x is Y n (x) = cA (x) pA (x)+

∫
z∈S c

I (x, z) pI (x, z) dz , where

18The assumption of a freely tradable agricultural good which is produced at every location is frequently used in
models of economic geography. It provides tractability as wages are equalized across space (in nominal terms). An
alternative/equivalent way to model infrastructure provision is to assume that the only input into infrastructure is
labor, which in turn is perfectly mobile between locations (within an economy). But consumption takes place at
the place of origin. This will equalize wages across locations (which is in the present model done by the presence
of the homogenous agricultural good) making the presence of the agricultural good redundant.
19Notice that U(x) is a positive monotonic transformation U(x) = [Ũ(x)]ρ/((1−α)(1−ρ)) of the usual Cobb-Douglas
formulation Ũ(x) =

[
cA (x)

]α [
uI (x)

]1−α
. The transformation makes the theoretical analysis of the model more

tractable (without qualitatively changing the main conclusions).
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pA (x) is the price of the agricultural good at location x and pI (x, z) is the price of a variety
imported from location z and consumed at x.

The utility maximization problem implies that the demand functions for the agricultural good
and a certain variety of the industrial good are respectively

cA (x) =
αY n (x)

pA (x)
and c I (x, z) = (1− α) Y n (x)

pI (x, z)−σ

P I (x)1−σ , (4)

where σ ≡ 1/ (1− ρ) and

P I (x) =

[∫
z∈S

pI (x, z)1−σ
dz

] 1
1−σ

(5)

is the price index for industrial goods at location x .

The indirect utility attainable at prices pA (x), pI (x, z) and income Y n (x) can be written as

V (x) = A
[
pA (x)

]−αρ/((1−α)(1−ρ)) [
P I (x)

]1−σ
(Y n (x))ρ/((1−α)(1−ρ))

, (6)

where A ≡
(
αα/(1−α) (1− α)

)ρ/(1−ρ)
.

4.3. Production

At each location z ∈ S, the agricultural and the industrial good are produced under conditions
of perfect competition. The only input of production is labor. Production functions for the
two types of goods are linear yA(z) = blA(z) and y I(z) = l I(z), where b > 0 is a productivity
parameter common to all locations. Output quantities are denoted by yA (z) and y I (z), and
labor inputs by lA (z) and l I (z) , respectively.

We assume that, within addresses, workers are perfectly mobile across agricultural and industrial
firms. This in turn implies that pA (z) = w (z) /b and pI (z) = w (z), where w (z) is the wage
rate (expressed in units of numeraire) at address z. Industrial goods bear transportation costs.
We assume that there are no trade costs other than transportation costs.20 Hence, the c.i.f.
prices faced by consumers differ from the f.o.b. (ex-factory) prices. In particular, a household
at x faces the price pI (x, z) = pI (z)T (x, z) for a variety of the industrial good imported from
location z . In contrast, the agricultural good can be transported freely.

4.4. Equilibrium

In this paper, we impose a non-full-specialization (NFS) assumption: there is always a strictly
positive quantity of agricultural production at each location. The NFS assumption introduces
20In Section 5, when we consider international trade, we will introduce a discrete trade friction at the border.
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factor price equalization in terms of the agricultural good.21 We may therefore choose the
agricultural good as the numeraire and set pA (z) = 1 for all z ∈ S. Since pA (z) = 1 for any z ,
we drop the superscripts A and I in the following.

As the price of the agricultural good is normalized to unity, the wage rate at location z , w(z),
is equal to b. The gross income at location x in terms of the numeraire is then Y (x) = bm (x).
Finally, from our assumption on technology, the c.i.f. prices of industrial goods are p (x, z) =

bT (x, z) .

The government imposes a lump-sum tax with rate t, which is assumed identical across addresses
s ∈ S. Thus, the net income at location x , Y n (x), is (1− t)bm (x). Total tax income is

B = bt

∫
s∈Sc

m (s) ds = btL.

Substituting the expressions for net household income and for the price index, we can now
rewrite the indirect utility function in (6) as

V (x) = Ω(1− t)(σ−1)/(1−α)m̃ (x)

[∫
z∈S

T (x, z)1−σ
dz

]
, (7)

where m̃ (x) = m (x)(σ−1)/(1−α) and Ω ≡
(
αα/(1−α) (1− α) bα/(1−α)

)ρ/(1−ρ)
is a constant.

4.5. The choice of infrastructure investment

In this section, we characterize optimal policies {ia(s), ta}s∈S in a closed economy. The social
planner chooses the infrastructure investment and the tax rate to maximize total welfare – the
sum of individual utilities – in the economy. Ignoring the irrelevant constant, we have

{ia (x) , ta}x∈S = arg max

{
(1− t)

(∫
x∈S

m̃ (x) v(x)dx

) 1−α
σ−1
∣∣∣∣∫
x∈S

q (x) i (x) dx ≤ btL

}
, (8)

where
v(x) =

∫
z∈S

T (x, z)1−σ
dz. (9)

A sufficient condition for concavity of the objective function in (8) is

1 + (γ (δ − 1))−1 > σ > 2− α. (10)

The first inequality means that T (x, z)1−σ is concave with respect to infrastructure investments,
implying that the consumption utility, v(x), is concave in infrastructure investments as well.22

21Relaxing the NFS assumption would allow to study the interaction between infrastructure investment policies and
regional specialization patterns. This is an interesting issue that raises additional complications. It is therefore left
to future research.
22The function

(
1 + 1

δ−1x
1−δ)γ(1−σ)

is strictly concave on [0,∞) if and only if γ(σ − 1) (δ − 1) < 1. In turn,
T (x, z)1−σ is concave with respect to infrastructure investment.
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The second inequality, which would be always met if σ ≥ 2, implies that the objective function
is concave in v(x). As a result, the objective function is concave with respect to infrastructure
investments.23

Next, we characterize the solution of the planner’s problem. Note that, without loss of generality,
we find the solution among continuous functions on [0, s̄]. That is, social welfare is maximized
with respect to ia (x), where ia (x) is continuous.

Proposition 1 The optimal allocation of infrastructure spending across space and the opti-
mal tax rate chosen by a social planner under autarky are implicitly determined by the following
system of equations:

ia (x)δ =
bγ (1− α) (1− ta)L

q(x)

[
φL(x) + φR(x)

]
, (11)

ta =

∫
s∈S q (s) ia (s) ds

bL
, (12)

where φL (x) and φR (x) denote aggregate marginal utilities from investing to the left or the
right of x, respectively, and are defined as

φL(x) =

∫ x
0
m̃ (s)

[∫ s̄
x

(
1 + 1

δ−1

∫ t
s
ia (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫

s∈S m̃ (s) v(s)ds
,

φR(x) =

∫ s̄
x
m̃ (s)

[∫ x
0

(
1 + 1

δ−1

∫ s
t
ia (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫

s∈S m̃ (s) v(s)ds
.

Proof In the Appendix.

The investment at location x is higher, the larger the sum φL (x) +φR (x) or the lower the cost
of infrastructure at the location, q(x). In the next proposition, we summarize some additional
properties of the optimal infrastructure investment function, ia (x), and the consumption utility,
v(x).

Proposition 2 The optimal infrastructure investment function, ia (x), and the consumption
utility, v(x), have the following properties:

(i) The infrastructure investments are zero at the borders of the region: ia (s̄) = ia (0).

23Our results are qualitatively robust to changes in the functional form of the transportation costs as long as
T (x, z)1−σ is concave in i (s), s ∈ [x, z ], and has an unbounded derivative at i(s) = 0.
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(ii) If q(x) is continuously differentiable, ia (x) is increasing in the neighborhood of zero and
decreasing in the neighborhood of one: specifically, (ia (x))′x=0 =∞ and (ia (x))′x=s̄ = −∞.

(iii) If there is no variation in the cost of infrastructure investment and the household size across
the locations: q(x) = q and m(x) = m for any x ∈ S, then v(x) and ia (x) are symmetric
around x = s̄/2 and have a hump shape with maximum at x = s̄/2.

Proof The first property immediately follows from the definitions of φL(x) and φR(x).
Specifically, we have that φL(s̄) = φL(0) = φR(s̄) = φR(0) = 0. The last two properties are
established in the Appendix.

According to the proposition, if there is no variation in the cost of infrastructure and in household
size, the optimal infrastructure is symmetric around the middle point of the [0, s̄]-interval. So,
transportation costs in central parts of the country are lower than in peripheral parts and,
thereby, households located closer to the middle point have higher indirect utility. The intuition
is that, at the optimum, the sum of marginal benefits from investment needs to be equalized
to the constant cost of investment at each location and this is achieved by higher investment
in central locations.

4.6. Comparative statics

The optimal infrastructure investment at location x is implicitly determined by

ia (x) =

(
γ (1− α)

(
bL−

∫
s∈S q (s) ia (s) ds

)
q(x)

(
φL(x) + φR(x)

))1/δ

(13)

≡ ia (x, Ia, ε) ,

where Ia represents the infrastructure profile in the economy and ε is the set of parameters in
the model. Thus, changes in ia(x) due to changes in ε are implicitly determined by

∂ia (x)

∂ε
=
∂ia (x, Ia, ε)

∂ε
+
∂ia (x, Ia, ε)

∂Ia
∂Ia

∂ε
. (14)

The first term in the right-hand side of (14) captures the direct effect of ε on ia (x), while the
second term stands for the indirect effects.

Proposition 3 Changes in the parameters in the model have the following effects on the
optimal infrastructure profile in a closed economy:.

(i) A rise in b increases ia(x) for all x.

(ii) Assuming that m(x) = m for all x , a rise in m increases ia(x) for all x.

(iii) Assuming that q(x) = q for all x , a rise in q decreases ia(x) for all x.
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Figure 2 – Closed economy equilibrium investment loci: comparative statics

(a) Moving s̄ from 500 to 700 (b) Moving γ from 0.86 to 0.7
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(c) Moving σ from 2.7 to 2.0 (d) Moving δ from 1.65 to 1.5
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Notes. Solid black curve: default investment distribution with σ = 2.7, δ = 1.65, γ = 0.86, α = 0.5,
q(x) = q = 1, m(x) = m = 1000, b = 1, and s̄ = 500. Dashed red curves: distributions resulting from
alternative parameterizations. See Table 2 for calibration details.

(iv) Assuming that m(x) = m for all x , a rise in s̄ has a positive direct effect on ia(x) for x close
to the right border and has an ambiguous impact on the investments at the other locations.
If in addition q(x) = q for all x , then a rise in s̄ has a positive direct effect on ia(x) for all
x ∈ S.

Proof In the Appendix.

While parts (i) to (iii) of Proposition 3 account for direct and indirect effects, part (iv) describes
only the direct effect of an increase in s̄ (which, holding population density constant, amounts
to an enlargement of a country, such as the reunification of Germany in 1990). Figure 2(a)
provides a numerical illustration of the overall effect of a rise in s̄ on the infrastructure profile.24

Enlargement of a country diverts investment away from locations sufficiently far from the added

24In the figure we consider a discrete variation of the model that has similar properties as the continuous model
(see more on the choice of the parameterization in Section 5.3).
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territory. This is consistent with the German post-reunification experience.25

The formal analysis of the comparative statics with respect to γ, δ, and σ is not tractable; so, we
turn to numerical experiments. A lower value of γ makes the dependence of transportation costs
on infrastructure investments weaker. Therefore, the returns from investing in infrastructure
at all locations are smaller, leading to lower ia (x) at all locations (Figure 2(b)). Lower σ
makes the varieties of the differentiated product less substitutable, increasing the benefits of
intra- and international trade. As a result, incentives to invest in infrastructure go up and,
therefore, ia(x) rises ((Figure 2(c)). In contrast, changing δ has an ambiguous impact on
infrastructure investment. With the chosen parameterization, a decrease in δ from 1.65 to 1.5

makes investments at different locations more easily substitutable. This decreases infrastructure
investments at all locations and also lowers the spatial variance of investment (Figure 2(d)).

5. Infrastructure investment and international trade

Now, we assume that the world economy consists of two independent countries, each with its
own government that decides on infrastructure investment in a non-cooperative way. However,
consumers demand goods from all over the world. Thus, we have a situation with ‘globalized
markets, but regional politics’. Otherwise, we maintain all earlier assumptions. To start with,
we assume that countries are symmetric. In particular, the world geography is described by
the [0, 2s̄]-interval, where locations from [0, s̄] and (s̄ , 2s̄] represent the home and the foreign
country, respectively. To isolate a pure border effect on the equilibrium infrastructure profile we
assume away any variation in the costs of infrastructure and in household size across locations:
i.e., q(x) = q and m(x) = m for all x ∈ [0, 2s̄].26 Finally, we suppose that trade between loca-
tions in different countries is subject to an exogenous discrete (i.e., independent from distance)
border friction denoted by τ ≥ 1. That is, the cost of delivering one unit of a product produced
at foreign location z to domestic location x is τT (x, z), where T (x, z) is modeled as before.

5.1. World planner problem

We start with a description of the first-best situation, in which economic and political space
coincide. Such a world planner problem is characterized as follows:

{iw (x) , tw}x∈[0,2s̄] = arg max
i(x),t

{
(1− t)

(∫ 2s̄

0

v(x)dx

) 1−α
σ−1
∣∣∣∣q ∫ 2s̄

0

i (x) dx ≤ 2bLt

}
, (15)

25See the information on
www.bmvi.de/SharedDocs/DE/Artikel/StB/entwicklung-der-autobahnen-in-deutschland-seit-der-
wiedervereinigung.html.
26The framework can be easily extended to the case when q(x) and m(x) are symmetric around x = s̄.
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where v(x) is utility at address x given by v(x) =
∫ 2s̄

0
τ (1−σ)I(x,z)T (x, z)1−σ

dz and L is popu-
lation size in each country.27 The world planner problem looks very similar to the social planner
problem in the case of a closed economy. The only difference is that geographical space is now
given by the [0, 2s̄]-interval and trade between locations in different countries incurs extra costs.
Hence, we can formulate the following proposition.

Proposition 4 The optimal allocation of infrastructure spending across the world geography
and the optimal tax rate chosen by the world planner are implicitly determined by the following
system of equations:

iw (x)δ =
2bLγ (1− α) (1− tw)

q

(
φL,w(x, τ) + φR,w(x, τ)

)
, (16)

tw =
q
∫ 2s̄

0
iw (s) ds

2bL
, (17)

where

φL,w(x, τ) =

∫ x
0

[∫ 2s̄

x
τ (1−σ)I(t,s)

(
1 + 1

δ−1

∫ t
s
iw (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫ 2s̄

0
v(s)ds

,

φR,w(x, τ) =

∫ 2s̄

x

[∫ x
0
τ (1−σ)I(t,s)

(
1 + 1

δ−1

∫ s
t
iw (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫ 2s̄

0
v(s)ds

,

where I(t, s) = 1 if locations t and s belong to different countries and 0 otherwise.

Proof The proof is exactly the same as that for Proposition 1.

When τ is equal to unity, the properties of the world planner solution are the same as those
for the autarky planner case; see Proposition 2. In particular, the infrastructure profile has a
hump shape with maximum at s̄. However, when τ > 1, the infrastructure profile chosen by the
world planner has a double-hump shape (see details in the Appendix). At Home it is decreasing
around the border s̄, at Foreign it is increasing. Due to the presence of the border friction, the
infrastructure profile in the countries is skewed towards internal locations compared to the case
with no border friction.

5.2. Global economics, regional politics

We assume that two independent governments play a Nash game and set their infrastructure
investment schedules non-cooperatively.

27The constraint in the maximization problem is q
∫ 2s̄

0 i (x) dx ≤ bt
∫ 2s̄

0 m (x) dx = 2bs̄m = 2bL, where L is the
size of the countries.
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The game is defined as Γ = (I, Ui ,Θi) , where I = {H, F} represents the set of countries, Θi is
country i ’s strategy set (i ∈ I), and Ui is country i ’s payoff functional defined on ΘH×ΘF . In the
context of the present framework, Home’s strategy set, ΘH, is given by

{
iH(x), tH

}
x∈[0,s̄]

, where

iH(x) ≥ 0,
∫ s̄

0
iH (x) dx ≤ bLtH/q, and tH ∈ [0, 1]. Similarly, ΘF is the set of

{
iF (x), tF

}
x∈[s̄ ,2s̄]

,

where iF (x) ≥ 0,
∫ 2s̄

s̄
iF (x) dx ≤ bLtF/q, and tF ∈ [0, 1]. Here, iH(x) and iF (x) are contin-

uous on [0, s̄] and [s̄ , 2s̄], respectively. Finally, the countries’ payoffs are represented by the
corresponding countries’ total welfare functions.28

Since the countries are symmetric, in the following analysis we focus on the home country only.
Given the infrastructure profile and the tax rate in the foreign country, the social planner at
home solves the following maximization problem:

{
iH(x), tH

}
x∈[0,s̄]

= arg max
t,i(x)

{
(1− t)

(∫ s̄

0

v(x)dx

) 1−α
σ−1
∣∣∣∣q ∫ s̄

0

i (x) dx ≤ bLt

}
, (18)

where

v(x) =

∫ 2s̄

0

τ (1−σ)I(x,z)T (x, z)1−σ
dz.

As agents consume both domestic and foreign products, consumption utility, v(x), depends not
only on domestic infrastructure investment, but also on the foreign investment. As a result,
foreign infrastructure investment affects the choice of infrastructure investment in the home
country, and vice versa. The next lemma describes the best response of the home social planner
given a certain infrastructure profile in the foreign country.
28As the Nash equilibrium in the above game, we consider the limit of the Nash equilibrium in the corresponding
discrete approximation Γn = (I, Uin,Θin) (in other words, the equilibrium in game Γ is considered as the limit
(n → ∞) of the equilibrium in game Γn). To formulate Γn, we consider a uniform partition of the [0, 2s̄]-interval
given by {xi}i=0..2n, where x0 = 0, xn = s̄, and x2n = 2s̄. In this case, the set of strategies of the home country,
ΘHn in country i is given by

{
iH(xi), t

H
}
i=0..n

, where iH(xi) ≥ 0,
∑n

i=0 i
H (xi)4n ≤ bLtH/q, and tH ∈ [0, 1] (here,

4n = s̄/n is the partition size). In the same way, ΘFn is the set of
{
iF (xi), t

F
}
i=[n+1,2n]

(without loss of generality,

we assume that location n belongs to the home country), where iF (xi) ≥ 0,
∑2n

i=n+1 i
F (xi)4n ≤ bLtF /q, and

tF ∈ [0, 1]. The countries’ payoffs are then the following:

UHn = (1− tH)

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

,

UFn = (1− tF )

(
2n∑

i=n+1

v(xi)4n

) 1−α
σ−1

,

where

v(xi) =

2n∑
j=0

τ (1−σ)I(xi ,xj )T (xi , xj)
1−σ 4n .

It is straightforward to see that the game Γn has a Nash equilibrium in pure strategies. This is due to the fact that
the strategy sets are non-empty, convex, and compact subsets of a metric vector space and the payoff functions
are continuous on ΘHn ×ΘFn and concave in the own strategy of a player: i.e., Uin is concave on Θin.
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Lemma 2 Given an infrastructure profile in the foreign country,
{
iF (x)

}
x∈(s̄ ,2s̄]

, the home

social planner chooses an infrastructure investment schedule and a tax rate,
{
iH(x), tH

}
x∈[0,s̄]

,
such that the following equations are satisfied:

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃
L

(x, τ) + φ̃
R

(x, τ)
)
,

tH =
q
∫ s̄

0
iH (x) dx

bL
,

where

φ̃
L

(x, τ) =

∫ x
0

[∫ s̄
x

(
1 + 1

δ−1

∫ t
s
iH (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫ s̄

0
v(s)ds

+

τ1−σ
∫ x

0

(∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
s
iH (r)1−δ

dr + 1
δ−1

∫ t
s̄
iF (r)1−δ

dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

, and

φ̃
R

(x, τ) =

∫ s̄
x

[∫ x
0

(
1 + 1

δ−1

∫ s
t
iH (r)1−δ

dr
)γ(1−σ)−1

dt

]
ds∫ s̄

0
v(s)ds

.

Proof In the Appendix.

The optimal infrastructure profile in an open economy has a similar form as the one of a closed
economy. The main difference is the expression for φ̃

L
(x, τ) which represents the aggregate

marginal welfare gains from a rise in iH (x) to the left of location x . The reason is that
infrastructure investments at location x affect the transportation costs from all foreign locations
to the locations on the left of x (as the foreign country is located on the right of x). This leads
to additional welfare gains from a rise in infrastructure investment at location x compared to
the closed economy case. As a result, in contrast to the closed economy case, iH (x) is strictly
greater than zero at x = s̄ if and only if iF (x) is strictly positive in some right neighborhood
of x = s̄. If iF (x) is equal to zero in some right neighborhood of x = s̄, then φ̃

L
(x) is exactly

the same function as in the case of a closed economy, because the transportation costs from
foreign locations are infinitely high. Finally, as in the closed economy case, the infrastructure
investment at location x = 0 is zero: iH (0) = 0.

In the symmetric Nash equilibrium of the game, countries’ equilibrium infrastructure profiles are
symmetric around x = s̄, such that iF (x) = iH(2s̄ − x) for x ∈ [s̄ , 2s̄]. Using Lemma 2, we may
formulate the next proposition.

Proposition 5 In the symmetric Nash equilibrium, the equilibrium home infrastructure profile
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and tax rate are implicitly determined by the following system of equations:

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃
L,N

(x, τ) + φ̃
R,N

(x, τ)
)
,

tH =
q
∫ s̄

0
iH (x) dx

bL
,

where φ̃
L,N

(x, τ) = φ̃
L

(x, τ) and φ̃
R,N

(x, τ) = φ̃
R

(x, τ) from Lemma 2 and iF (r) = iH(2s̄ − r).

Proof The proof directly follows from Lemma 2 and the fact that in the symmetric equi-
librium iF (x) = iH(2s̄ − x).

In the symmetric equilibrium, there always exists some left (right) neighborhood of x = s̄ where
iH (x) (iF (x)) is strictly greater than zero. Indeed, if it is not true, then iH (x) is equal to zero
around x = s̄. This implies that iF (x) is equal to zero around x = s̄ as well (due to symmetry).
As a result, there is no trade with the foreign country and the equilibrium infrastructure profile
corresponds to the optimal infrastructure profile in the closed economy, which is, as was shown,
strictly positive for any x ∈ (0, s̄). This constitutes a contradiction. Thus, we can conclude
that, in contrast to the closed economy case, the infrastructure investment at x = s̄ is strictly
positive due to the possibility of trade with the foreign country. Specifically,

iH (s̄)δ =
bLγ (1− α) (1− tH)

q
φ̃
L,N

(s̄ , τ) > 0.

Next, we explore the behavior of the infrastructure profile around the border. The following
proposition holds.

Proposition 6 In the symmetric Nash equilibrium,
(
iH (x)

)′
x=0

= ∞ and
(
iH (x)

)′
x=s̄

is
negative, but finite.

Proof In the Appendix.

In the presence of a foreign country, the distribution of infrastructure investment has more
mass in regions closer to the border (compared to the closed economy case). Nevertheless,
the infrastructure profile still is hump-shaped (as

(
iH (x)

)′
x=0

> 0 and
(
iH (x)

)′
x=s̄

< 0). Hence,
investment close to the border is lower than in central locations. Compared to the first-best
solution, the non-cooperative solution features underinvestment at the border.

We now discuss how discrete border costs τ affect the endogenous allocation of infrastructure
spending within economies and how failing to account for infrastructure biases the border effect
measured in the traditional econometric specifications of the gravity model. Focusing on direct
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effects of changes in τ on infrastructure investment, we explore how τ changes the infrastructure
profile at given total spending.29 The following proposition holds:

Proposition 7 The direct effect of a rise in τ is a decrease in iH (x) in some left neigh-
borhood of the border and an increase in iH (x) at locations that are relatively far from that
border.

Proof In the Appendix.

The existence of explicit border costs τ skews the equilibrium infrastructure profile away from
the border as gains from trade with the foreign country are lower and the marginal returns from
investing around the border are smaller. This offers a natural explanation for the large border
effect observed in the data. Indeed, a rise in τ not only increases the trade costs with the foreign
country, but also decreases the stock of infrastructure around the border. As a result, the trade
trade cost effect of the discrete border cost is larger than the one implied by τ alone.

5.3. Calibration and numerical illustrations

To provide numerical illustrations of the role of infrastructure in explaining the border effect, we
calibrate the model. Due to the stylized nature of our theory, this is not a proper quantitative
exercise. Nonetheless, we set parameters such that the model replicates some key moments
estimated on European data. For simulation purposes, we work with a discrete formulation of
our model; see Appendix B for details.

For the calibration, we normalize some parameters. Particularly crucial parameters such as δ, γ
and τ are set such that the model replicates key moments obtained from EU data. Assuming
symmetry within countries (m(x) = m, q(x) = q), and noting that per capita income b and
the cost of infrastructure q affect investment only through bL/q (where L = ms̄), we set m(x)

to 1000 and normalize q = 1 and b = 1. To guarantee enough variation in distance between
locations generated by the model, we set s̄ at 500. We set the share of income spent on the
agricultural product, α, to 0.5.30

We set parameters δ, γ, τ such that the model replicates key empirical moments. To this end,
we apply a gravity equation of the type

lnXi j = µ1 lnDi j + µ2Bi j + exi + imj + εi j , (19)

to data generated by our model and to actual data. Xi j represents trade volumes from location i
to j , Di j denotes the distance between the locations, Bi j is a border dummy that is equal to one

29In the numerical exercise below, we take account of indirect effects. Quantitatively, they are of absolutely minor
importance.
30In Table 4 we report robustness checks pertaining to these choices.
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Table 2 – Calibration strategy

(a) Normalizations
Parameter Value Explanation
m(x) 1000 arbitrary choice
s̄ 500 arbitrary choice
b 1 symmetry
q(x) 1 symmetry
α 0.5 arbitrary choice

(b) Parameters calibrated to match EU data
Parameter Value Moment
γ 0.86 Distance elasticity of transport costs in French data

(Combes and Lafourcade, 2005): 0.9
δ 1.65 Distance elasticity µ1 estimated in EU trade data: -1.1
τ 1.32 Border effect µ2 estimated in EU trade data: -0.8
σ 2.70 Set to satisfy (10) given calibrated values of γ, δ, τ

if i and j belong to different countries, exi and imj are exporter and importer fixed effects, and
εi j is the error term. We use European trade data to estimate the empirical counterpart of (19);
see Section 6. This yields estimates µ̂1 = −1.1 and µ̂2 = −0.8. We parameterize the model
such that the trade data generated from it produces exactly the same values for µ1 and µ2 as
those obtained from real data. The parameter γ is chosen such that the generated elasticity
of internal transportation costs with respect to distance matches the value of 0.9 estimated in
French data.31 We use parameter restriction (10) to set the elasticity of substitution σ at the
maximum admissible level.

Table 2 summarizes the calibration strategy and outcomes. The border friction implies an
ad valorem tax equivalent of 32%, which is a reasonable magnitude compared with estimates
presented in Anderson and van Wincoop (2004). The interregional elasticity of substitution
is 1/δ = 0.61, implying a fairly strong degree of complementarity of investments between
different locations. The parameter governing the curvature of the transportation cost – distance
relationship is γ = 0.86. Finally, the maximum value of σ that satisfies the parameter restriction
(10) is 2.7.32 We use this parameterization as our benchmark configuration.

We are now ready to run numerical exercises. We start with the counterfactual situation where
τ is equal to unity. Figure 3 compares optimal schedules for infrastructure investment and

31We do not match spending on infrastructure investment t, because due to the one-period nature of our model
i(x) measures capital stocks while the empirical value of t discussed in Section 2 refers to the flow of (gross)
investment.
32This is a low value compared to findings in the literature; see Costinot and Rodriguez-Clare (2014) for a survey.
As equation (10) is only a sufficient condition, we can set σ at higher levels, but may end up violating the (unknown)
necessary condition for the existence of an interior solution. We work with σ = 3.4 in the robustness checks below.
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aggregate price levels, denoting the outcome under autarky by ia(x), the world-planner solution
by iw(x), and non-cooperative Nash outcome by (iH(x), iF (x)). In line with our analytical
results, the world-planner schedule has a unique maximum at the location of the border, while
the non-cooperative schedule has a double-hump shape with underinvestment around the border
(compared to the world-planner outcome). This shape generates a border effect even without
having any discrete border costs.

Figure 3 – Infrastructure investment and price levels across space in the absence of explicit
(discrete) border frictions (i.e., τ = 1)

(a) Investment (b) Price levels

Notes. ia(x), iw (x), and iH(x) refer to the autarky, central-planer, and non-cooperative optimal infrastructure
investment distributions. Similarly for price levels. See Table 2 for the parameterization and Table 3 for
numerical results.

Panel b in Figure 3 depicts the distribution of the price index across locations in the autarky,
world-planner, and Nash outcomes. In our framework, the price index at location x depends
on the ‘remoteness’ of the location (which determines the level of ‘global’ trade) and the level
of infrastructure in the neighborhood (which determines the level of ‘local’ trade). Thus, in
the world-planner outcome the price index is the lowest at the border, since the border is the
least remote location in the world economy and the infrastructure investment is the highest
there. In contrast, in the Nash equilibrium the price index has the lowest value at some internal
location, rather than at the border (meaning that the local effect is stronger than the global
one). This is caused by the skewness of the infrastructure profile towards internal locations in
the Nash outcome. If we decrease the geographical size of countries s̄ (making ‘local’ trade less
important), the lowest value of the price index will be closer to the border.

Given our parameterization, Table 3 shows that underinvestment in border regions is quantita-
tively quite substantial, while global underinvestment is not. Compared to the first-best situation
(row (2)), the non-cooperative outcome (row (3)) displays an investment gap of 49% at the
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Table 3 – Autarky versus first-best and Nash outcomes under trade

(1) (2) (3) (4) (5)
border inv. max. inv. tax rate real income inequality
i (500) arg max i (x) t E [W ] V [lnW ] ,%

Autarky: τ =∞
(1) ta, ia (x) 0.0 250 13.4% 1.0000 1,69
No discrete border frictions: τ = 1 (counterfactual)
(2) tw , iw (x) 172.9 500 14.1% 1.0707 1.67
(3) tH, iH (x) 88.5 296 13.1% 1.0563 1.20
Discrete border frictions: τ = 1.32 (data)
(4) tw , iw (x) 117.6 322 13.8% 1.0419 1.24
(5) tH, iH (x) 63.6 276 13.2% 1.0335 1.14

Notes: The parameterization is as in Figure 3. Two symmetric countries, S = [0, 1000]. Autarky

welfare is normalized to unity.

border (compare 88.5 to 172.9). Overall spending on infrastructure investment (measured by
the equilibrium tax rate), falls only 7% short of the first-best. Compared to autarky, investment
is about 5% higher in the first-best situation but about 2% lower in the Nash equilibrium. Real
net per capita income at location x being given by W (x)= (1− t)b/P (x), we use average real
per capita income, E[W ], as a measure of welfare (in Table 3 we normalize autarky welfare to
unity). The gains from trade are about 7.1% when the infrastructure investment schedule is
first-best and about 5.6% when it is Nash; the cost of non-cooperation therefore amounts to
about 1.4% of autarky welfare, or, equivalently to 20% of the gains from trade achievable when
investment is first-best.33 Interestingly, inequality (as measured by the variance of the log of
real net income multiplied by 100) is almost identical in autarky and in the first-best situation,
but is substantially lower in Nash, where the income differential between the border region and
the periphery is much smaller

In Figure 4 we set τ = 1.32. The world planner spends 4.5% more on infrastructure than
country-level governments would, while the shortfall of investment at the border is around 46%.
The welfare loss (the difference between the average real per capita income in the first-best and
non-cooperative outcome) constitute around 0.8%. This suggests that lower border frictions
increase the welfare loss from infrastructure misallocation (when τ = 1, the loss is around
1.3%). The fall in the real income at the border is more substantial (around 8.7%), suggesting
that the welfare loss from underinvestment in infrastructure can be larger, if a country has more

33If we fix overall spending to the first-best level, but allow independent governments to decide about the spatial
distribution of this spending, the welfare losses become minor. This outcome is robust across different parameter-
ization, suggesting that welfare losses arising in case of the Nash equilibrium are mainly due to insufficient finance
(a lower tax rate), rather than the distribution of infrastructure itself. The border investment is higher when overall
spending is forced to be at the first-best level, but it still falls short from the optimum substantially.
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than one border. The border cost decreases average real per capita income by around 2%. The
presence of the border cost τ also changes the distribution of the price index (see panel b of
Figure 4). If there is a border friction, the prices of the foreign varieties rise compared to the
prices of the local varieties and, infrastructure investment moves away from the border. As a
result, the price index achieves its minimum in more remote (from the border) locations. In the
extreme case with prohibitive border costs, we have the autarky case where the price index has
a U-shape with the minimum at the central location.

Figure 4 – How higher discrete border costs change the distribution of infrastructure invest-
ment and price levels across space

(a) Investment (b) Price levels

Notes. iH(x) and iF (x) refer to the non-cooperative (Nash) infrastructure investment distributions, and iH′(x)

and iF ′(x) show the same loci with a higher border cost. See Table 2 for the parameterization and Table 3
for numerical results.

To assess the role of infrastructure in explaining the border effect, we perform the following
experiment. We set the infrastructure investment i(x) at all locations to its average value under
the benchmark parameterization ī (which is 131.8). In this case, the distribution of infrastructure
is flat and does not affect the size of the border effect. All other parameters and variables remain
fixed. Then, we simulate trade volumes within and between countries and estimate the border
effect generated by the model. We find that the estimate of µ2 drops from 0.80 to 0.65. This
means that the variation in infrastructure investments explains around 19% of the border effect.
The rest is explained by the border friction τ and the correlation between the border dummy
and distance generated by the model.34 In other words, the border effect identified in a gravity
model that ignores variation in transport infrastructure over space is biased upward by 19%.
The discrete border friction τ = 1.32 explains about 59% of the border effect, and 22% is due

34That correlation amounts to 71%. It arises from the fact, that pairs of locations characterized by short distances
tend to be within-country and, thus, have a border dummy of zero while the opposite is true for long distances.

27



CEPII Working Paper Trade and the spatial distribution of transport infrastructure

Table 4 – Robustness checks

(1) (2) (3) (4) (5)
γ δ τ 4W Inf ra

Benchmark:
m(x) = 1000, s̄ = 500,

n = 100, σ = 2.7
0.86 1.65 1.32 0.8% 19%

(1) m(x) = 10000 0.85 1.50 1.35 0.7% 13%
(2) s̄ = 700 0.86 1.69 1.31 0.9% 21%
(3) n = 70 0.86 1.66 1.32 0.9% 20%
(4) σ = 3.4 0.80 1.83 1.12 1% 22%

Notes: We fix the moments measured in European and French data, modify our choice

of free parameters, and obtain new calibrated values for γ, δ, τ, (columns (1), (2), (3)).

Columns (4) and (5) show the welfare costs resulting from an inefficient infrastructure

investment, and the relative importance of infrastructure in explaining the border effect,

respectively.

to the correlation between the border dummy and distance.35

We also perform robustness checks regarding the chosen values of m(x), s̄, n, and σ. In
particular, we change the value of one of these parameters, re-calibrate the model, and assess
the role of infrastructure in explaining the border effect as well as the size of welfare losses.
Table 4 summarizes the results. As can be seen, a rise in the population density (see row (1)
in the table) barely changes the calibrated values of γ and τ and the welfare losses. The value
of δ decreases from 1.65 to 1.50. Since the value of δ falls, the variation in infrastructure
investments becomes less important and, consequently, the role of infrastructure in explaining
the border effect becomes less pronounced. In contrast, an increase in the geographical size
of countries s̄ (row (2)) raises the value of δ and, thereby, increases the role of infrastructure.
The values of γ and τ and the welfare losses do not substantially change. A decrease in the
number of internal regions n from 100 to 70 (row (3)) has a minor impact on the values of
the calibrated parameters, welfare losses, and the role of infrastructure. Finally, a rise in σ (row
(4)) has a substantial impact on the calibrated values of the parameters (especially, on τ), while
the impact on the role of infrastructure and welfare losses is small. The role of infrastructure
increases from 19% to 22% and the welfare losses increase from 0.8% to 1%.

5.4. The role of country asymmetries

We study asymmetries with respect to countries’ populations (given area), or with respect to
areas (holding population constant). Figure 5 illustrates these cases, where Home is always
assumed the ‘bigger’ country, and we distinguish between cases with and without an explicit

35This as a statistical artefact that arises from the high correlation between distances and the border dummy. It
implies that if i(x) = ī and τ = 1, the model still generates a statistical border effect.
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discrete border friction τ . In panels a and c , both countries have the same geographical ex-
tension, but Home has a higher population (and, hence, a higher density). Specifically, we set
mH(x) = 1100 and mF (x) = 900.36 In panels b and d , Home has a larger geographical exten-
sion, but the same density m(x) as Foreign. The figures show that, regardless of whether or not
there is a discrete border cost and regardless of the nature of the asymmetry, the larger country
wishes to invest more (in the sense that the mode of the distribution is higher). However, in
contrast to the symmetric case, the planner solution involves a concentration of investment in
the ‘bigger’ economy; with an explicit border friction, the planner solution can even be bimodal
(panel d). In all cases, the Nash equilibrium yields global underinvestment, including at the
border. However, the spatial structure differs across scenarios.37 The ‘bigger’ country severely
underinvests, but the ‘smaller’ one may overinvest relative to the planner solution. This is par-
ticularly pronounced when the source of asymmetry is density; in this case, the location with the
strongest underinvestment typically is an interior location in Home. When asymmetry is caused
by geographical size, the extent of underinvestment is strongest in the border region.

Interestingly, overinvestment in Foreign under Nash implies that the smaller country may gain
from non-cooperation (assuming away any transfers between countries in the first-best out-
come). In panel c , in the first-best outcome, average real per capita income at Foreign is 7.04,
while in the Nash outcome it is 8.37, i.e., non-cooperation outperforms cooperation by around
19%. In contrast, Home’s average income is 9.74 the first-best outcome, while it 9% lower
under Nash (8.87). Hence, asymmetry in population density across countries may increase the
welfare losses (caused by the misallocation of infrastructure in the Nash equilibrium) of the
larger country and decrease those of the smaller country (that may even gain). Thus, under
asymmetry, welfare effects of non-cooperation are substantially more substantial than in the
symmetric case (where the average welfare loss was just about 0.8%). A similar observation
emerges in panel d , where Home’s welfare loss under Nash relative to the first-best is around
2.7%, while Foreign gains around 6% from non-cooperation.38

5.5. Intercontinental trade

So far, we have studied a world of two countries which are connected by land-borne trade. Now
we study how the emergence of intercontinental trade affects the intracontinental distribution
of infrastructure investment, trade, welfare, and the size of the border effect. We do this by
assuming that there is a third country, call it China, which supplies and demands goods to and

36Compared to the benchmark configuration withmH(x) = mF (x) = 1000, world income expressed in the numeraire
is the same.
37In the Nash equilibrium, the infrastructure investment profile has a discontinuity at the border (caused by the
asymmetry between the countries).
38We also consider the case when both countries have the same total income with Home being larger in a geo-
graphical size, but less densely populated (the world total income remains fixed). In this case, we find that Foreign
loses from non-cooperation, while Home gains. This suggests that the effect of population density on welfare losses
is stronger than that of the geographical area. A number of robustness checks confirm this conclusion.
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Figure 5 – The distribution of infrastructure investment when Home is ‘bigger’ than Foreign

(a) Population size (τ = 1) (b) Geographical size (τ = 1)

(c) Population size (τ = 1.32) (d) Geographical size (τ = 1.32)

Notes. iH(x) and iF (x) refer to the non-cooperative and iw (x) to the central-planer and optimal infrastructure
investment distributions. The default parameterization follows Table 2. Panels (a) and (c): m(x) is 1100 and
900 for domestic and foreign locations, respectively. In the non-cooperative outcome with τ = 1.32, the tax
rate is 13.2% in Home and 13.3% in Foreign. Average real per capita income is 8.87 and 8.37, respectively.
The level of inequality is 1.15 and 1.13. Panels (b) and (d): The geographical size of Home and Foreign is
750 and 250, respectively. In the non-cooperative outcome with τ = 1.32, the tax rate at Home and Foreign
is 13.8% and 12.0%, respectively. Average real per capita income is 8.87 and 8.08, respectively. The level of
inequality is 1.16 and 1.01.

from Home and Foreign via a harbor that is located at address 0 in Home. We also assume
that China’s supply and demand capacity is exogenous to the outcomes in Home and Foreign.
In particular, we do not model the spatial extension of China, and treat it as a mass point at
location 0.
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By construction, this constellation creates a costal country (Home) and a hinterland (Foreign).
It also breaks symmetry between Home and Foreign, as any location in Home now is more central
than any region in Foreign, even with a uniform distribution of infrastructure investment: on
average, consumer prices will be lower in Home than in Foreign. However, with endogenous
infrastructure investment, there will be additional effects that tend to exacerbate inequality
both between Home and Foreign as well as within them.39

Panels (a) and (b) in Figure 6 show how the intracontinental infrastructure investment distri-
bution changes due to the emergence of intercontinental trade with China. In panel (a) China
is considered to produce the same number of varieties as Home and Foreign together (that is,
it has the mass of 1000). In this case, the share of trade volumes from China to Home and
Foreign in the total income of those countries constitutes around 10%,40 reflecting the share of
imports (in total income) of EU from the rest of the world in 2010. In Home, there will be a
massive reallocation of spending towards the coastal locations where the Chinese imports crowd
out varieties from locations within Home and Foreign. Investment falls rapidly with increasing
distance from the harbor and is lower than in the benchmark case (intracontinental trade only)
in about 80% of all locations in Home. In particular, Home will invest substantially less at the
border with Foreign. With the infrastructure schedule dramatically more skewed in Home, the
distribution of real wages will also become more uneven, so that trade with China makes Home
a more unequal economy.

Simulations show that in Foreign, now a hinterland, incentives for investment barely change,
because there are two competing factors: On the one hand, all else equal, the presence of
China should result in more investment. On the other hand, this effect is mitigated by the
remoteness of China and the reallocation of infrastructure investment in Home away from the
border with Foreign. However, the emergence of China increases the intracontinental border
effect, because it diverts investment away from the border zone. This means that, in a standard
gravity equation, the estimated border dummy should grow larger with the increasing importance
of intercontinental trade despite the fact that border related trade costs have not changed.
Specifically, under the benchmark parameterization the presence of China increases the size of
the border effect by around 24% (from −0.8 to −0.99).

In panel (b) of Figure 6, we consider the case when China is much smaller than Home and
Foreign (with a mass of 40). In this case, the infrastructure profile at Home still has a hump
shape. However, there is more investment in coastal areas and less in the hinterland compared
to the benchmark case (of intracontinental trade only).

A rise in trade with China increases welfare in the coastal country but has minor effects in the
hinterland (Foreign), where inequality also remains essentially unchanged. In contrast, trade

39Another application of this model variant may be to poor coastal countries in Africa, which trade mostly inter-
continentally, and where intracontinental infrastructure and trade are underdeveloped.
40Such a low share (taking into account the size of China) is explained by the remoteness of China and the fact
that only (1− α) share of total income is spent on industrial goods.
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Figure 6 – Overseas trade and the distribution of intracontinental transport infrastructure
investment

(a) “Large China” (b) “Small China”

Notes. iH(x) and iF (x) refer to the Nash infrastructure investment distributions without a third country,
while iH′(x) and iF ′(x) refer to those when there is trade with a third country (China). The parameterization
is as follows: σ = 2.7, δ = 1.65, γ = 0.86, α = 0.5, q(x) = q = 1, b = 1, τ = 1.32, m(x) = 1000 for all
locations at Home and Foreign, and s̄ = 500. In Panel (a) China has the mass of 1000, in (b) it has the mass
of 40.

with China has a substantial non-monotonic effect on inequality in Home. When the size of
China is small, inequality in Home decreases (since the distribution of the infrastructure becomes
flatter (see panel b in Figure 6)). When China is big, inequality rises, as the infrastructure profile
is highly skewed towards the border with China (see panel a in Figure 6). Table 5 summarizes
the effects of trade with China on Home and Foreign under the benchmark parameterization.

6. Supporting evidence

Two important prediction of our theoretical model are: (i) locations within jurisdictions are
better connected by transport infrastructure than locations lying in two different jurisdictions,
and (ii) inefficiently low infrastructure investment in border regions explains part of the so called
border effect. In this section we use data from the European Union to provide some supporting
evidence for these hypotheses.

Data. We use data provided by Pisu and Braconnier (2013) on bilateral minimum road dis-
tances and minimum travel times between 220 cities in 22 countries in continental Europe.41

41The countries are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Estonia, France, Germany, Greece,
Italy, Hungary, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania, Slovenia, Slovak Republic,
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Table 5 – The Presence of China: Inequality and Welfare

Home Foreign

Welfare Inequality Tax rate Welfare Inequality Tax rate

The size of China is 0: 1.0000 1.14 13.2% 1.0000 1.14 13.2%

The size of China is 40: 1.0243 0.26 13.2% 1.0000 1.14 13.2%

The size of China is 1000: 1.4658 33.62 11.2% 0.9949 1.25 13.1%

Notes: Calibration as in Table 2; ‘China’ is modeled as a mass point at location 0. Welfare when the size of

China is zero is normalized to unity.

The data come from Bing Maps Route Service and relate to the year 2012. The authors pro-
vide population weighted proxies at the country-pair level which we use in our analysis. We
merge this information with bilateral trade data for the year of 2010 provided in the World Input
Output Database (WIOD) project (Timmer et al., 2015). Crucially, that data base provides
accurate measures for domestic trade within countries. Unfortunately, there is no information
on Switzerland, so that our analysis rests on 212 = 441 country pairs. We focus on the 16
non-service sectors contained in WIOD. Finally, we obtain CES weighted geographical distance
measures (based on great-circle distances), common language and contiguity measures from
Mayer and Zignago (2011).42

Straight-line distance, road distance, and travel time. We start by showing direct evidence
on relative underinvestment in European border regions. The left-hand diagram in Figure 7
shows that the ratio of road distance to the straight-line distance (the so called divergence)
is on average higher between cities in different countries than between cities within the same
country. Intranational road trips are 9% longer than what the great-circle (bird-flight) distance
would indicate; international road trips are 30% longer. The difference is statistically significant
at the 1% level. As the mid panel in Figure 7 shows, the average travel speed on domestic roads
is 88 km/h while it is 100 km/h on international road trips; the difference again being significant
at the 1% level. However, this disadvantage for domestic trips does not outweigh the advantage
of shorter connections. The hypothetical speed of traffic for overcoming the bird-flight distance
is 83 km/h in domestic links versus 77 km/h in international links. This difference is statistically
significant at the 5% level.43

Spain, Switzerland.
42Head and Mayer (2002) show that measuring distance between countries by a geometric (CES) average of
distances between major cities dramatically reduces the border effects in European data. These authors, however,
do not account for real transportation costs.
43Note that the hypothetical travel speed on the bird-flight distance is given by the ratio between the travel speed
on the road and the excess length of the road trip over the bird-flight distance.
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Figure 7 – Distance versus travel time in intra- and international bilateral links
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Notes. Average excess distance is the %-ratio between road distance and bird-flight distance, both in km.
Avg. road speed denotes the average travel speed on the fastest road connection, in km/h, while avg. direct
speed refers to the average theoretical speed on the most direct (= bird-flight distance), in km/h.

Table 6 conditions the difference between domestic and international trips on distance and also
controls for destination and origin fixed effects. Column (1) reports a simple linear regression
that correlates the log of travel time (in minutes) and the log of geographical (great-circle)
distance. The obtained elasticity is 0.96. Moreover, column (2) shows that travel time is
significantly larger between different countries than within countries, the difference being equal
to about 28%. Including the dummy variable for domestic connections brings down the elasticity
of travel time with respect to distance to 0.89, again hinting at some concavity in the relationship
between distance and trade costs.44 Columns (3) and (4) repeat this exercise, but use the log of
road distance (in km/h) as the dependent variable. It turns out that road distances that cross
a political border are longer by some 22%, controlling for bird-flight distance. Finally, columns
(5) and (6) show that domestic travel time is longer by 8% given road distances.

The border effect. Finally, we turn to an investigation of the border effect. To this end, we
use a generalization of equation (19)

Xi js = exp [µ1 lnTi j + µ2Bi j + exis + imjs + εi js ] ,

where s indicates the sector. Bilateral trade costs are Ti j and Bi j , where the latter is a dummy
that takes value one if for an international and value zero for an intranational transaction. Ti j =

44The hypothesis of a unitary elasticity is rejected at the 1% level.
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Table 6 – Bird-flight distance, road distance, and travel time across EU countries

(1) (2) (3) (4) (5) (6)
Dep.var.: log travel time log road distance log travel time

Border (0,1) 0.282*** 0.217*** 0.0799***
(0.0418) (0.0325) (0.0232)

ln bird-flight distance 0.959*** 0.893*** 1.041*** 0.990***
(0.0137) (0.0128) (0.0113) (0.00945)

ln road distance 0.924*** 0.905***
(0.0104) (0.00987)

Constant -0.0795 0.344*** -0.0253 0.300*** -0.0721 0.0526
(0.0890) (0.0837) (0.0727) (0.0613) (0.0682) (0.0657)

R-squared 0.983 0.986 0.992 0.994 0.994 0.994

Notes: OLS regressions. All regressions contain complete sets of separate exporter and importer fixed effects.
Robust standard errors (clustered at the pair-level) in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
N = 441.

(1 +Di j)
δ0 eδ1CLi j+δ2CONTi j models trade costs as a function of distance-related transportation

costs Di j , common language CLi j and contiguity CONTi j . Di j can either be the weighted
great-circle distance between i and j , or the shortest (similarly weighted) road distance, or
the minimum (similarly weighted) travel time. Following current practice, we estimate Poisson
models, as this setup is best suited do deal with zero trade flows and heteroskedasticity arising
from additive error terms.45

Column (1) of Table 7 reports a frequently observed pattern in gravity models: the trade elas-
ticity of bird-flight distance is close to −1, and a common language or a adjacency (contiguity)
have strongly positive effects on trade flows. The estimated border effect is −0.804, signalling
that international trade flows are by about 55% (1−exp(−0.804) = 0.55) smaller than intrana-
tional ones, holding other trade determinants (such as market sizes, multilateral distances – all
captured by fixed effects – geographical distance, contiguity, and common language) constant.46

45See Head and Mayer (2014). As a default, we use a Poisson pseudo maximum likelihood estimator (PPML), but
for the instrumental variable estimation we estimate the Poisson model using a a generalized methods of moments
(PGMM) approach. Note that results do not qualitatively depend on using the Poisson approach. Log-linear OLS
models yield qualitatively similar results; see Table .2 in the Appendix.
46The measured border effect seems small compared to earlier findings in the literature, e.g., by Nitsch (2000).
This has several reasons: First, we use the more consistent distance measure proposed by Head and Mayer
(2002), which has been shown to shrink the border effect in a sample of European data from the early 1990s (see
footnote 42). Second, the use of PPML yields a substantially smaller border effect than OLS, which dominated the
earlier literature; compare Table .2 in the Appendix. Third, thanks to the WIOD project, we have more accurate
information on within-country trade. And fourth, our data refers to a very recent period (2010) and lower border
effects probably simply show the effects of ongoing economic integration in the EU.
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Table 7 – The border effect and the role of infrastructure: Poisson models

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dep.var.: aggregate trade sectoral trade
Sample full non-contingent pairs full

PPML PPML PPML PGMM PGMM PGMM-IV PPML PPML PPML
Border (0,1) -0.804*** -0.547*** -0.422** -2.063*** -1.546*** -1.411*** -0.775*** -0.503*** -0.391***

(0.170) (0.180) (0.176) (0.458) (0.428) (0.462) (0.0915) (0.101) (0.101)
ln great-circle distance -1.112*** -1.204*** -1.142***

(0.128) (0.135) (0.0674)
ln road distance -1.171*** -1.211***

(0.123) (0.0693)
ln travel time -1.361*** -1.365*** -1.443*** -1.391***

(0.124) (0.139) (0.163) (0.0713)
Common language (0,1) 0.761*** 0.840*** 0.841*** -0.295 -0.145 -0.134 0.763*** 0.843** 0.841***

(0.132) (0.134) (0.125) (0.414) (0.355) (0.367) (0.0803) (0.0793) (0.0792)
Contiguity (0,1) 0.326** 0.215 0.134 0.320*** 0.200** 0.131

(0.157) (0.154) (0.141) (0.0845) (0.0843) (0.0816)
Constant 14.92*** 15.58*** 16.07*** 17.66*** 17.66*** 18.03*** 12.49*** 13.24*** 13.63***

(0.881) (0.872) (0.802) (0.835) (0.835) (0.834) (0.780) (0.788) (0.758)

Observations 441 441 441 377 377 377 7,004 7,004 7,004
R-squared 0.989 0.990 0.991 0.977 0.977 0.959 0.961 0.961

Notes: Pseudo Maximum Likelihood (PPML) or Generalized Methods of Moments (PGMMs) estimations of Poisson moels. All models contain complete sets of

separate exporter and importer fixed effects (exporter × sector, importer × sector effects in case of sectoral trade data). Robust standard errors in parentheses, ***

p < 0.01, ** p < 0.05, * p < 0.1.

Using the log of road distance or travel time instead of great-circle distance as a proxy of
transportation costs (columns (2) and (3)), the estimated border effect increases from −0.804

to −0.547 and to −0.422, respectively. Hence, international trade is only by 42% and 34%
smaller, respectively, than intranational trade, holding other determinants of trade constant.47

Hence, it appears that, in Europe, using proxies of transportation costs that account for the
quality of infrastructure brings down the estimated border effect by between 24% and 38%.

Sensitivity Analysis. Treating borders as exogenous to sectoral trade shocks εi js , the identi-
fication assumption underlying our analysis can be stated as cov (εi js , Ti j |Bi j , exis , imis) = 0.

A high realization of εi js could incite countries i and j to invest into reducing Ti j , which could
bias the distance effect µ1 away from zero. How this affects our coefficient of interest, µ2, is
not obvious, though. Ti j depends on investment Ii and Ij , but also on investment by countries
k 6= i , j located on the shortest travel route between i and j. So, if i and j boost investment
due to a positive shock in εi js , they also lower Ti i and Tj j , which increases Xi i and Xj j , and this
contributes to moving µ2 upwards at given Ik .

To contain the danger of biased results, we restrict the sample to non-contingent countries, the
transport links between which are importantly shaped by countries other than the trade partners
themselves. We also instrument trade costs Ti j by the weighted sum of Tkk , where k belongs to
the set K of countries through which any transport from i to j has to transit. More precisely,

471− exp (−0.547) = 0.42, and 1− exp(−0.422) = 0.34, respectively.

36



CEPII Working Paper Trade and the spatial distribution of transport infrastructure

we focus on travel time and apply the average travel speeds measured in within-country k ∈ K
links to the great-circle distance from i to j. The partial correlation between this instrument
and actual travel time Ti j is 0.46. Columns (4) to (5) of Table 7 show the results. First, note
that excluding the 61 contingent pairs strongly increases the absolute value of the border effect
(column (4)).48 Second, replacing great-circle distance by travel time lowers the absolute value
of the border effect quite significantly (column (5)).49 Third, instrumenting travel time further
slightly reduces the absolute value of the border effect but increases that of travel time (column
(6)).

Next, we turn from aggregate to sectoral data. Columns (7) to (9) show that our argument
remains robust. Estimated coefficients change only minimally. If we drop all trade relationships
of any country that account for more than 5% of total sector-level trade and which are, thus
presumably important enough to affect investment decisions, we find a substantially higher
border effect, but replacing great-circle distance by road distance or travel time shrinks the
effect; see Table .3 in the Appendix.50

Finally, we also check whether our results are driven by the recent eastward enlargement of the
EU. Excluding the 10 new eastern European EU member countries present in our data, we find
an algebraically smaller border effect. Still, the measured border effect changes upon replacing
great-circle distance by road distance or travel time in the way suggested by our model.

7. Extensions and robustness analysis

In this section, we discuss some potential extensions of the framework.

7.1. Toll roads

Today, many countries operate public toll tax systems for freight traffic. The share of interre-
gional highways subject to decentrally administered toll systems ranges from 6 percent in the
U.S. to 52 percent in France. Countries such as Germany and Austria have centrally adminis-
tered distance dependent road pricing for lorries. User fees may be contingent on a wide array
of factors such as the situation of the environment (e.g., smog), the degree of congestion, the
time at which a road is traveled, and so on.

How a toll system affects the main argument in this paper depends very much on its specific de-
sign. Here we study a particularly interesting and relevant configuration. Suppose governments
48The common language dummy turns insignificant as we have only very few non-contingent countries with common
language in the sample.
49A similar result obtains when using road distance; see Table .3 in the Appendix. Interestingly, the elasticity of
trade with respect to travel time is almost unchanged by restricting the sample to non-contingent pairs.
50Table .4 in the Appendix runs sector-level regressions and finds statistically significant border effects in 12 out of
16 sectors. In all of these sectors, the border effect is (algebraically) smaller when road distance or travel time is
used instead of great-circle distance.
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decide on the infrastructure allocation across space, but rather than taxing consumers through
lump-sum taxes, they tax road users per unit of distance. Further assume that the tax varies
continuously on the space of addresses and that it works just as our iceberg transportation costs,
albeit with the shaved transported good not lost but transferred into the governments coffers
and redistributed to households. In that case, the government has two margins of action: it
sets a distribution of fees, f (s), where s ∈ [0, s̄], and decides on the infrastructure allocation,
i (s) . Total income from fees will be B =

∫ s̄
0
f (s) R̄ (s) ds, where R̄ (s) measures total traffic

through location s. Note that R (s) depends on the domestic and on the foreign distribution of
infrastructure. If the government is free to spend B on whatever infrastructure distribution it
prefers, and does not impose any additional tax, it will find it optimal to make fees dependent on
the distance to the border, with higher fees the closer the border. Moreover, it will concentrate
its spending as before in the central regions of the jurisdiction. The reason for this result is
identical to the one discussed above: The government cares only about home welfare, thus
taxing foreigners and transferring the receipts to home citizens is a welcome option.

If governments are not allowed to spend toll income on places other than those where the income
has been generated, there will be a direct link between infrastructure investment and transit
volume, f (s) R̄ (s) /q (s) = i (s) . Governments will then set f (s) such that native welfare is
maximized. By imposing high fees in border regions, governments tax foreign consumers more
strongly than domestic ones; however, the implied high investment volumes are of little value
for domestic consumers. By imposing high fees in the center, governments affect domestic
consumers, but also achieve high utility for them. The implied distribution of infrastructure
need not exhibit excessive spatial variation, but it still can; the exact outcome depending on
underlying model parameters.

7.2. Private-public partnerships (PPP)

Since ancient times, governments have asked private agents to construct and operate roads
or railways and allowed them to take fees for road usage. In England, from the 17th century
on, Parliament entrusted private companies with concessions to run certain road connections;
around 1830 there were about 48,000 km of so called turnpike roads; see Lay (1992). The
system was also used in the US. Currently, cash-strapped governments around the world use
various types of PPP to finance the construction of transport links.

We provide a simple model of such a situation. Each government in the two countries auctions
the exclusive right to run a road segment which coincides with the space of the government’s
jurisdiction. The firm with the highest bid gets the license. In a competitive auction, the
equilibrium bid amounts to exactly the profits that the would-be monopolist can achieve. In
principle, the government can let the monopolist choose the preferred investment schedule i (s)

and a fee structure f (s) . Or it can regulate either i (s) or f (s) . Here, we consider an example
where two contiguous countries each entrust a private monopolist to choose an optimal iM (s),
given a regulated user fee p per unit of traffic.
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The monopolist in Home sets iM (s) to maximize profits

π
(
iM
)

= p

∫ s̄

0

R̄(x)dx −
∫ s̄

0

q(x)iM(x)dx, (20)

where R̄(x) is the measure of the total traffic through location x , iM(x) is infrastructure invest-
ment at location x , and q(x) denotes the associated cost per unit of investment.51

Total traffic through location x is given by

R̄(x) =

∫ x

0

(∫ 2s̄

x

R(y , z)dz

)
dy +

∫ 2s̄

x

(∫ x

0

R(y , z)dz

)
dy,

where

R(y , z) = (1− α)(1− tM)
Y (z)T (y , z)1−σ∫ s̄
0
T (v , z)1−σ

dv
.

Here, R(y , z) is interpreted as the traffic from y to z : a quantity measure of trade in products
produced at y and transported to z . It is determined by demand at location z and the trans-
portation costs from y to z . Note that in general R(y , z) is not equal to R(z, y). Finally, tM is
the income tax imposed by the government to finance the infrastructure investments and Y (z)

is the gross income at location z . We assume that the monopolist takes the income tax and
the location sizes as given. As in the benchmark case, the monopolists at Home and Foreign
choose the corresponding infrastructure investments non-cooperatively. In the symmetric Nash
equilibrium with no asymmetries in the cost of infrastructure and the location size, the domestic
infrastructure profile (in case of the interior solution) is given by

ı̃M (x)δ =
pγ(1− α)(1− t̃M)(σ − 1)

q

(
φ̃
L,M

(x) + φ̃
R,M

(x)
)
,

where as before φ̃
L,M

(x) (φ̃
R,M

(x)) represents the aggregate marginal profits due to a rise in
traffic from the right (the left) to the left (the right) of location x .

Similar to the social-planner scenario, the monopolist infrastructure profile has a hump shape
in autarky and is skewed towards the border with the foreign country in the open economy
case. It is also straightforward to show that the presence of costs associated with crossing the
border will redistribute the infrastructure away from the border, amplifying the border effect.
However, there is a conceptual difference between iH (s) and iM (s) . Under certain parameter
constellations, the monopolist finds it optimal to chose zero investment in peripheral locations.
This is because higher investment in s has two effects on total traffic. On the one hand, traffic
through s goes up, increasing total traffic. On the other hand, traffic through other regions

51In the above specification, we assume that the government pays a fixed price p per unit of the traffic to the
monopolist and finances this with a lump-sum tax. This assumption removes the distortive effects of p on the
infrastructure profile.
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goes down because of the corresponding changes in the price indices (a substitution or trade
diversion effect). This tends to decrease total traffic. In some cases the negative effect prevails
over the positive one, so that iM (s) = 0. In contrast, the social planner sets i (s) > 0 for all s
except s = 0.

Figure 8 shows the optimal infrastructure distributions chosen by the monopolists under autarky
(panel a), and under international trade (panel b), and compares them with the Nash social-
planner or the first-best solutions. The parameterization is benchmark with τ = 1 and the fee p
is set such that the monopolist and social-planner scenarios yield the same overall investment.
As can be seen, the monopolist chooses investment schedules that exhibit substantially more
spatial variation than the one picked by the social planner. Moreover, as discussed above, there
is zero investment at peripheral locations in both panels. In the case of international trade,
the monopolist invests much more around the border even compared to the first-best outcome.
This can generate a smaller or even no border effect, but comes at cost of zero investments in
many peripheral locations (that are in fact driven into autarky).

Figure 8 – Equilibrium investment loci: social planner vs. monopolist.

(a) Autarky (b) Trade

Notes. Solid black curves (iM(x) and iMH(x)) refer to investment profile resulting from non-cooperative
monopolists. Dashed red curves (ia(x) and iH(x)) refer to (non-cooperative Nash) solutions. The parame-
terization is as follows: σ = 2.7, δ = 1.65, γ = 0.86, τ = 1, α = 0.5, q(x) = q = 1, b = 1, m(x) = 1000

for all locations, and s̄ = 500. In Figure (a), p = 0.4. Spending on infrastructure (in terms of the tax rate)
in this case is 13.4 percent. In Figure (b), p = 0.275. Spending on infrastructure in each country in the Nash
equilibrium is 13.1 percent.

7.3. Internal labor mobility

In the model we assume away the effects of internal labor mobility on the infrastructure profile.
Here we offer some discussion. First, note that the underinvestment problem in border regions
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relative to the first-best occurs regardless of the form of a (non-degenerate) distribution of
economic activity. This is because the share of non-internalized benefits of investment are
higher the closer one gets to the border, regardless of distributional details.

In contrast, how the endogenous adjustment of infrastructure investment shapes the distribution
of economic activity and the size of the border effect, is hard to determine analytically as the
social planner needs to internalize the effects of infrastructure on the endogenous population
density. Moreover, multiple equilibria are possible. At the same time, the intuition behind
the impact of labor mobility on the equilibrium infrastructure profile seems to be relatively
straightforward.

With internal labor mobility (associated with some adjustment costs to avoid extreme solutions),
the equilibrium can be considered as the outcome of the following multi-stage variation of the
model. The economy starts with some distribution of population, which results in a certain
distribution of infrastructure investment chosen by the social planner. Then, given this infras-
tructure profile, agents decide about their location and, as a result, the population distribution
changes. Given the new distribution of population, the social planner adjusts the distribution of
infrastructure and continues doing so until convergence.

To understand the potential effects of labor mobility on the infrastructure profile in the above
variation of the model, we distinguish between high and low border frictions, and we assume a
uniform distribution of population as the initial one. With relatively high border costs, after the
first stage, the distribution of the price index will have a U-shaped form with the minimum at
some internal location that is relatively close to the central one (see panel b in Figure 4). In this
case, at the second stage the population will move away from the border to benefit from lower
aggregate prices at internal locations. This in turn will move the infrastructure distribution
even further from the border as well and so on. As a result, labor mobility will magnify the
concentration of infrastructure around internal locations and, therefore, increase the magnitude
of the border effect. The opposite happens when the border frictions are low. When the border
cost is low, after the first stage the price indexes will be the lowest relatively close to the border
(but not necessarily at the border as showed by the simulations), implying that the population
will move closer to the border. This will lead to more investment around the border and so on.
In this case, labor mobility will magnify the concentration of infrastructure around the border
and, thereby, decrease the magnitude of the border effect. However, underinvestment in Nash
relative to the first-best in border regions will remain, regardless of the distribution of economic
activity.

The reasoning above suggests that there can exist a certain threshold value of the border cost
τ̂ such that if τ > τ̂ , labor mobility increases the border effect, otherwise the opposite happens.
Further (perhaps, quantitative) analysis is needed to explore the actual effect of labor mobility on
infrastructure investments. Meanwhile, if the infrastructure investments were initiated/started
in the past when the border costs were quite high, then in the model with labor mobility one
might expect a higher border effect, rather than a lower one.
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7.4. The political economy of infrastructure investment

An alternative way of modelling the endogenous infrastructure distribution is a majority rule
voting system. For any distribution of the transport infrastructure, each household derives a
certain utility level which is represented by its indirect utility function. As a result, each household
has its own preferences over the continuum of infrastructure distributions that are determined by
the geographical location of this household: a household prefers more infrastructure investments
around its location. For instance, for a household located at the periphery (x = 0), the optimal
infrastructure profile on [0, s̄] is a decreasing curve with maximum at x = 0. It is possible to
show that the household preferences defined above are single peaked. As a result, the political
equilibrium infrastructure profile is the profile chosen by the median voter, which is the household
located at x = s̄/2. So, in the absence of asymmetries across locations, the median household
will choose a hump shaped profile with maximum at s̄/2. In other words, the median voter
solution is qualitatively equivalent to the social planner solution. Thus, all the qualitative results
derived in the paper can be extended to the framework with a majority rule voting system.

8. Conclusions

This paper develops a simple theoretical model where consumers demand goods from the entire
world, but the world is fragmented into jurisdictions which set infrastructure investment sched-
ules in a non-cooperative way. Governments care only for the welfare of their own constituency
and ignore the effects that their decisions have on foreign consumers; this basic externality leads
to global underinvestment. The lower the geographical distance of a location is to the political
border, the bigger is the externality since a larger share of the benefits caused by investment
accrues to foreign consumers. Hence, the externality has a spatial structure: infrastructure
underinvestment is stronger in poltically peripheral regions of jurisdictions rather than in central
ones.

The local lack of infrastructure investment makes imports from other countries more expensive
than imports from other regions from the same country, even if geographical distance or incomes
of trading partners are the same. Our infrastructure story may therefore contribute towards
unpacking trade costs and explaining the border effect first highlighted by McCallum (1995)
and since then discussed in a voluminous empirical literature.

We use intra- and international trade flows data from Europe to calibrate the model. We find
that about 20% of the empirically observable border effect is due to low infrastructure investment
around national borders. In our simulations, the border effect is magnified by the emergence of
intercontinental trade and appears larger, when countries are asymmetric with respect to their
sizes. We argue that privatization of construction and operation of roads may not undo the
border underinvestment problem; similarly, it also emerges under a majority voting system.

Information from the Bing Maps Route Service allows us to show that international road dis-
tances are about 22% longer than intranational ones and that travel is 28% longer, holding
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bird-flight distance constant. The econometrically identified border effect falls from -0.80 in a
conventional setup to -0.55 when road distance is used rather than bird-flight distance. Hence,
using transportation cost proxies that account for infrastructure brings down the border effect,
as implied by our theoretical argument.

Future work should endogenize the distribution of economic activity by allowing intranational
migration of workers or/and firms. Moreover, to carry out a full-fledged quantitative analysis,
it would be needed to carry out the analysis on a plane rather than a line with realistic topology
as in Allen and Arkolakis (2014); this is a non-trivial generalization, since it requires not only to
characterize optimal investment schedules for given routes, but also to solve for the layout of
optimal transportation networks.
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Appendix

Appendix A: Proofs

In the Appendix, we provide all the necessary proofs for the lemmas and propositions in the paper.

Proof of Lemma 1

Property (i)

For three different locations x , y , and z such that x < y < z ,

T (x, y)T (y , z) =

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds

)γ (
1 +

1

δ − 1

∫ z

y

i (s)1−δ ds

)γ
=

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds +
1

δ − 1

∫ z

y

i (s)1−δ ds +
1

(δ − 1)2

∫ y

x

i (s)1−δ ds

∫ z

y

i (s)1−δ ds

)γ
>

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds +
1

δ − 1

∫ z

y

i (s)1−δ ds

)γ
=

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ
= T (x, z).

Property (iv)

The behavior of T (x, z) with respect to geographical distance can be checked by looking at the derivative
of T (x, z) with respect to z . Specifically, we have that

T (x, z) =

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ
,

Tz (x, z) = γ

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ−1 1

δ − 1

[
i (z)1−δ

]
> 0,

Tzz (x, z) = γ

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ−1

(γ − 1)

(
1
δ−1

[
i (z)1−δ

])2

1 + 1
δ−1

∫ z
x i (s)1−δ ds

− i (z)−δ i ′ (z)

 ≷ 0

⇐⇒
(γ − 1)

(T (x, z))1/γ

(
i (z)1−δ

δ − 1

)2

≷ i ′ (z) i (z)−δ .

The left-hand side shows the effect of a marginal increase in distance on Tz (x, z) under the assump-
tion that i (z + dz) = i (z) . It reflects variation in trade costs due to an increase in distance, holding
infrastructure constant. The right-hand side makes the opposite assumption and reports the change in
Tz (x, z) due to the difference in infrastructure investment between z and z+dz, holding the sheer costs
of distance constant. T (x, z) is convex (as in Krugman), if the left-hand side dominates.
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Property (v)

We compute the elasticity of substitution between investment at two different locations s ′, s
′′ ∈ [x, z ] as

follows

−
d ln [i (s ′) /i (s ′′)]

d ln
∣∣∣∂T (x,z)
∂i(s ′) /

∂T (x,z)
∂i(s ′′)

∣∣∣ ,
where for any s ∈ [x, z ]

∂T (x, z)

∂i (s)

d.≡ γ
(

1 +
1

δ − 1

∫ z

x

i (s)1−δ ds

)γ−1

i (s)−δ .

As a result, the elasticity of substitution is given by

−
d ln [i (s ′) /i (s ′′)]

−dδ ln |i (s ′) /i (s ′′)| =
1

δ
< 1.

Property (v i)

The Lagrangian for the cost minimizing problem can be written as follows:

Λ ({i (s)} , λ) = q

∫ z

x

i (s) ds + λ

[
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds − T̄ 1/γ

]
,

where q is the cost of infrastructure investment at location s. It is straightforward to see that the first
order conditions imply that, for any two locations k, l ∈ [x, z ],

i (k) = i (l) .

Taking into account the budget constraint, we derive that

i (k) = i (l) =
{

(z − x) /
[

(δ − 1)
(
T̄ 1/γ − 1

)]}1/(δ−1)
.

Proof of Proposition 1

To find the optimal infrastructure investments on [0, s̄], we first formulate and analyze a discrete modifica-
tion of the social planner’s maximization problem (which approximates the actual continuous maximization
problem). Remember that the social planner solves

{ia (x) , ta}x∈S = arg max

{
(1− t)

(∫
x∈S

m̃ (x) v(x)dx

) 1−α
σ−1
∣∣∣∣∫
x∈S

q (x) i (x) dx ≤ btL

}
.

where

v(x) =

∫
z∈S

T (x, z)1−σ dz

=

∫ s̄

0

(
1 +

1

δ − 1

∣∣∣∣∫ z

x

i (s)1−δ ds

∣∣∣∣)γ(1−σ)

dz

=

∫ x

0

(
1 +

1

δ − 1

∫ x

z

i (s)1−δ ds

)γ(1−σ)

dz +

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ(1−σ)

dz.
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In the discrete version of the problem, we assume that the geography of the economy consists of n
points (transportation hubs) uniformly distributed on [0, s̄]: 0 = x1 < x2.. < xn = s̄. We define the
distance between location xi and xi+1 by 4n: that is, x2− x1 = ...xn − xn−1 = 4n. We also assume that
the transportation costs between two locations, xi and xj , depend on the level of infrastructure at the
location of the producer and the intermediate locations between xi and xj (not including the location of
the consumer) and the distance between the locations determined by 4n.52 Specifically, if a product is
sent from xi to xj (xi < xj), the transportation costs are

T (xi , xj) =

(
1 +

1

δ − 1

j−1∑
k=i

i (xk)1−δ4n

)γ
.

We then formulate the social planner’s problem in the case of the discrete geography in the following
way:

{ia (xi) , t
a}i=1..n = arg max

(1− t)

(
n∑
i=1

m̃ (xi) v(xi)4n

) 1−α
σ−1

 , (21)

subject to

n∑
i=1

q (xi) i (xi)4n ≤ btL, (22)

i(xi) ≥ 0, i = 1..n. (23)

Here,

v(xi) = 4n


∑i−1
k=1

(
1 + 1

δ−1

i−1∑
j=k

i
(
xj
)1−δ4n

)γ(1−σ)

+

∑n
k=i+1

(
1 + 1

δ−1

k∑
j=i+1

i
(
xj
)1−δ4n

)γ(1−σ)

+ 1

 , (24)

where the first term in the brackets describes the welfare derived from trade with locations on the left
side of xi , the second term describes the welfare derived from trade with locations on the right side of
xi , and one stands for the transportation costs from xi to xi (that are normalized to unity). In this case,
the social planner’s problem is to choose the level of transportation infrastructure at each location xi
that maximizes the social welfare. This maximization problem is the approximation of the maximization
problem in the main text (see (8)). Specifically, taking the limit (n → ∞), one can derive the actual
maximization problem described in the main text. This in turn implies that the solution of the continuous
maximization problem is the limit of the solution of the discrete problem (when n →∞).

Note that the existence of the global maximum in the above discrete maximization problem follows
from the continuity of the objective function and the fact that the objective function is maximized on the
compact subset of Rn (which is given by the constraints in (22) and (23)). Moreover, it is straightforward

52The fact that the transportation costs between xi and xj do not include the level of infrastructure investment
at the destination location (the location of the consumer) means non-symmetric transport costs. However, taking
the limit (n →∞) will imply symmetric transport costs between any locations, as in this case the contribution of
the infrastructure of a single location into the total transport costs will be negligible.
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to show that if γ(σ − 1)(δ − 1) < 1 (as assumed in the paper),
(

1 + 1
δ−1

∑k
j=i+1 i

(
xj
)1−δ4n

)γ(1−σ)
is

a concave function in i (x) =
{
i
(
xj
)}
j=1..n

for any i and k . This in turn implies that ṽ(xi) is concave
in i (x) as the sum of concave functions, but not strictly concave, as v(xi) does not depend on i(xi).
However, it is straightforward to show that

∑n
i=1 m̃ (xi) v(xi) is strictly concave with respect to i (x).

Finally, since (1− α) / (σ − 1) is assumed to be strictly less than one, the objective function in (21) is
strictly concave in infrastructure investments, i(x).

Next, we formulate the corresponding Lagrange function that can be written as follows:

Λ ≡ (1− t)

(
4n

n∑
i=1

m̃ (xi) v(xi)

) 1−α
σ−1

− λ0

(
n∑
i=1

q (xi) i (xi)4n −btL

)
,

where λ0 is the Lagrange multiplier of the corresponding constraint. The necessary and sufficient condi-
tion for the global maximum is that

∂Λ

∂i (xi)
= 0, i = 1..n,

∂Λ

∂t
= 0.

Next, we find the expression for ∂Λ/∂i (xi). Specifically,

∂Λ

∂i (xi)
=

(1− t) (1− α)

σ − 1
4n

(
4n

n∑
l=1

m̃ (xl) v(xl)

) 1−α
σ−1
−1 n∑

l=1

m̃ (xl) (v(xl))′i(xi ) − λ0 4n q (xi) . (25)

One can show that

(v(xl))′i(xi ) = (4n)2 γ(σ − 1)i(xi)
−δ

i∑
k=1

(
1 +

1

δ − 1

l−1∑
j=k

i
(
xj
)1−δ4n

)γ(1−σ)−1

if i < l ,

(v(xl))′i(xi ) = (4n)2 γ(σ − 1)i(xi)
−δ

n∑
k=i

(
1 +

1

δ − 1

k∑
j=l+1

i
(
xj
)1−δ4n

)γ(1−σ)−1

if i > l ,

(v(xl))′i(xi ) = 0 if i = l .

As a result,

∂Λ

∂i (xi)
=

(4n)3 γ(1−α)(1−t)
i(xi )δ

∑i−1
l=1 m̃ (xl)

∑n
k=i

(
1 + 1

δ−1

k∑
j=l+1

i
(
xj
)1−δ4n

)γ(1−σ)−1


(
4n
∑n
l=1 m̃ (xl) v(xl)

)1− 1−α
σ−1

(26)

+

(4n)3 (1−α)(1−t)
i(xi )δ

∑n
l=i+1 m̃ (xl)

∑i
k=1

(
1 + 1

δ−1

l−1∑
j=k

i
(
xj
)1−δ4n

)γ(1−σ)−1


(
4n
∑n
l=1 m̃ (xl) v(xl)

)1− 1−α
σ−1

−λ0 4n q (xi) .
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Finally,

∂Λ

∂t
= −

(
4n

n∑
l=1

m̃ (xl) v(xl)

) 1−α
σ−1

+ λ0bL = 0 ⇐⇒

λ0 =

(
4n
∑n
l=1 m̃ (xl) v(xl)

) 1−α
σ−1

bL
. (27)

Note that since ∂Λ
∂i(xi )

|i(xi )=0 = ∞ (because of γ(σ − 1)(δ − 1) < 1), ia (xi) is strictly greater than zero
for all i = 1..n. That is, the global maximum {ia (xi) , t

a}i=1..n does not include zero investments and,
therefore, solves the following system of equations

q(xi)i
a (xi)

δ

4nbLγ (1− α) (1− ta)
=

∑i−1
l=1 m̃ (xl)

∑n
k=i

(
1 + 1

δ−1

k∑
j=l+1

ia
(
xj
)1−δ4n

)γ(1−σ)−1


∑n
i=1 m̃ (xi) v(xi)

(28)

+

∑n
l=i+1 m̃ (xl)

∑i
k=1

(
1 + 1

δ−1

l−1∑
j=k

ia
(
xj
)1−δ4n

)γ(1−σ)−1


∑n
i=1 m̃ (xi) v(xi)

,

n∑
i=1

q (xi) i
a (xi)4n = btaL.

As the solution of the continuous maximization problem is the limit of the solution of the discrete problem
(when n → ∞), it is straightforward to see that the optimal infrastructure investment function ia (x)

and the tax rate ta solve

ia (x)δ =
bLγ (1− α) (1− ta)

q(x)

(
φL(x) + φR(x)

)
,

ta =

∫ s̄
0 q (s) ia (s) ds

b
,

where

φL(x) =

∫ x
0 m̃ (s)

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s i
a (r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0 m̃ (s) v(s)ds
,

φR(x) =

∫ s̄
x m̃ (s)

(∫ x
0

(
1 + 1

δ−1

∫ s
t i

a (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0 m̃ (s) v(s)ds
.
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Proof of Proposition 2

Property (i i)

Note that the derivative of ia(x) with respect to x can be written as follows:

q(x)δia (x)δ−1 (ia (x))′ + q′(x)ia (x)δ = bLγ (1− α) (1− ta)
((
φL(x)

)′
+
(
φR(x)

)′) ⇐⇒
(ia (x))′ =

bLγ (1− α) (1− ta)
((
φL(x)

)′
+
(
φR(x)

)′)− q′(x)ia (x)δ

q(x)δia (x)δ−1
.

We have that(
φL(x)

)′
=

m̃ (x)

(∫ s̄
x

(
1 + 1

δ−1

∫ t
x i (r)1−δ dr

)γ(1−σ)−1
dt

)
−
∫ x

0 m̃ (s)
(

1 + 1
δ−1

∫ x
s i (r)1−δ dr

)γ(1−σ)−1
ds∫ s̄

0 m̃ (s) v(s)ds
,(

φR(x)
)′

=

−m̃ (x)

(∫ x
0

(
1 + 1

δ−1

∫ x
t i (r)1−δ dr

)γ(1−σ)−1
dt

)
+
∫ s̄
x m̃ (s)

(
1 + 1

δ−1

∫ s
x i (r)1−δ dr

)γ(1−σ)−1
ds∫ s̄

0 m̃ (s) v(s)ds
.

It is straightforward to see that (
φL(0)

)′
+
(
φR(0)

)′
> 0,(

φL(1)
)′

+
(
φR(1)

)′
< 0.

Since q′(x) is continuous on [0, s̄] and ia (0) = ia (s̄) = 0, q′(0)ia (0)δ = q′(s̄)ia (s̄)δ = 0. This in turn
immediately implies that

(ia (0))′ = ∞
(ia (s̄))′ = −∞.

Property (i i i)

First, we show that ia(x) is symmetric around x = s̄/2. To do so, we use the fact that the objective
function of the planner’s problem is strictly concave, implying that there is a unique solution of (11).
Indeed, if there are two different solutions of (11), then there are two different stationary points, which
is not possible with a strictly concave objective function. It is straightforward to see that if there is no
variation in the cost of infrastructure investment and the household size across the locations: q(x) = q

and m(x) = m for any x ∈ [0, s̄], symmetric investments indeed solve (11). Taking into account the
uniqueness of the solution, we can conclude that the symmetric infrastructure profile delivers the global
maximum of the maximization problem. Finally, if ia(x) is symmetric around x = s̄/2, the transportation
costs are symmetric and, thereby, v(x) is symmetric as well (this immediately follows from the definition
of v(x) (see (9)).
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Next, we prove that ia(x) has a hump shape with the peak at x = s̄/2. Note that the optimal investment
profile can be considered as a unique fixed point of a certain functional J : E −→ E. Here, E is the
subset of the space of symmetric (around x = s̄/2) continuous functions on [0, s̄], which is determined
by the constraints in the maximization problem. Specifically, the functional is given by

J(ia(x)) =

(
bLγ (1− α) (1− ta)

q

(
φL(x) + φR(x)

))1/δ

,

where

φL(x) =

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s i
a (r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0 v(s)ds
,

φR(x) =

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t i

a (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0 v(s)ds
.

We then show that if ia(x) has a hump shape with the peak at x = s̄/2, then J(ia(x)) has a hump
shape. This in turn means that the fixed point of the functional has a hump shape. That is, the optimal
investment profile has a hump shape.

Consider a function ia1 (x) ∈ E that has a hump shape. We define ia2 (x) as the value of the functional at
ia1 (x): i.e., ia2 (x) = J(ia1 (x)). Next, we prove that ia2 (x) has a hump shape. To show this, we consider
the derivative of ia2 (x). It is straightforward to see that

ia2 (x)δ−1 (ia2 (x))′ = 2
bLγ

qδ

(1− α) (1− ta)∫ s̄
0 v(s)ds

H(x),

where

H(x) =

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)1−δ ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)1−δ ds

)γ(1−σ)−1

dz.

The first thing to notice is that H(s̄/2) = 0 (which follows from the symmetry of ia1 (x)). Consider any
x < s̄/2, then the function H(x) can be written as follows:

H(x) =

∫ 2x

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)1−δ ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)1−δ ds

)γ(1−σ)−1

dz

+

∫ s̄

2x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)1−δ ds

)γ(1−σ)−1

dz,

where ∫ s̄

2x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)1−δ ds

)γ(1−σ)−1

dz > 0.

Note that as ia1 (s) is symmetric around x = s̄/2 and has a hump shape at s̄/2, for any 4 ∈ (0, x ]

ia1 (x +4) > ia1 (x −4) .
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This in turn means that for any 4 ∈ (0, x ],

1 +
1

δ − 1

∫ x+4

x

ia1 (s)1−δ ds < 1 +
1

δ − 1

∫ x

x−4
ia1 (s)1−δ ds,

implying that(
1 +

1

δ − 1

∫ x+4

x

ia1 (s)1−δ ds

)γ(1−σ)−1

>

(
1 +

1

δ − 1

∫ x

x−4
ia1 (s)1−δ ds

)γ(1−σ)−1

,

as γ(1− σ)− 1 is negative. As a result, it is straightforward to see that∫ 2x

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)1−δ ds

)γ(1−σ)−1

dz >

∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)1−δ ds

)γ(1−σ)−1

dz.

That is, for any x < s̄/2, H(x) > 0. Similarly, it is possible to show that for any x > s̄/2, H(x) < 0.
Thus,

(
ia2 (x)

)′ is strictly greater than zero 0 on x ∈ [0, s̄/2) and strictly less than zero on (s̄/2, 1]. This
means that ia2 (x) has a hump shape. Therefore, the solution of (11) has a hump shape.

Finally, we show that v(x) has a hump shape as well. We have that

v ′(x) =

(∫ x

0

(
1 +

1

δ − 1

∫ x

z

i (s)1−δ ds

)γ(1−σ)

dz +

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ(1−σ)

dz

)′

=
γ(σ − 1)i (x)1−δ

δ − 1

(∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)1−δ ds

)γ(1−σ)−1

dz

)

=
γ(σ − 1)i (x)1−δ

δ − 1
H(x).

Taking into account the properties of H(x), we can conclude that v(x) has a hump shape.

Proof of Proposition 3

Recall that when m(x) = m and q(x) = q, the optimal infrastructure profile ia(x) maximizes the following
function (up to an irrelevant constant):

W (I, A) =

(
1− A

∫
x∈S

i (x) dx

)(∫
x∈S

v(x)dx

)(1−α)/(σ−1)

,

where I = {i (x)}x∈{0,s̄} and A = q/bL (where L = ms̄). The partial derivative of W (I, A) with respect
to A is given by

∂W (I, A)

∂A
= −

(∫
x∈S

i (x) dx

)(∫
x∈S

v(x)dx

)(1−α)/(σ−1)

< 0.

We say that I ′ % I ′′ if and only if i ′ (x) ≥ i ′′ (x) for all x ∈ S. It is straightforward to see that if I ′ % I ′′,
then

∂W (I ′, A)

∂A
≤
∂W (I ′′, A)

∂A
for any A.
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The latter follows from the fact that v(x) is increasing in infrastructure investment. Thus, W (I, A) is
submodular and satisfies single crossing property. This in turn implies that a rise in A decreases the
optimal infrastructure profile Ia (see details in Milgrom and Shannon, 1994). That is, ia(x) falls for all
x . This proves statements (i)-(iii) in Proposition 3.

As noted above, if m(x) is the same at all locations, then L = ms̄ and

ia (x) =

(
γ (1− α) (bms̄ −

∫ s̄
0 q (s) ia (s) ds)

q(x)

(
φL(x) + φR(x)

))1/δ

.

In this case, the partial derivative of ia (x) with respect to s̄ is given by (here we use the fact that
ia (s̄) = 0)

∂ia (x)

∂s̄
=
γ (1− α)

q(x)δ
(ia (x))1−δ

((
φL(x) + φR(x)

)′
s̄

(bms̄ −
∫ s̄

0

q (s) ia (s) ds) + bm
(
φL(x) + φR(x)

))
.

The derivatives of φL(x) and φR(x) with respect to s̄ are given by

(
φj(x)

)′
s̄

=

∫ x
0

(
1 + 1

δ−1

∫ s̄
s i

a (r)1−δ dr
)γ(1−σ)−1

ds − v(s̄)φj(x)∫ s̄
0 v(s)ds

,

where j ∈ {L,R}. Thus,

∂ia (x)

∂s̄
=
bmγ (1− α)

q(x)δ
(ia (x))1−δ


2s̄(1−ta)

∫ x
0 (1+ 1

δ−1

∫ s̄
s i

a(r)1−δdr)
γ(1−σ)−1

ds∫ s̄
0 v(s)ds

+
(
φL(x) + φR(x)

)(
1− s̄v(s̄)(1−ta)∫ s̄

0 v(s)ds

)
 .

As can be seen, if x is sufficiently close to s̄, then
(
φj(x)

)′
s̄
> 0 (as φj(s̄) = 0) and, thereby, ∂ia (x) /∂s̄ >

0. Moreover, if the cost of infrastructure is uniform,

∂ia (x)

∂s̄
> 0 for all x .

This is due to fact that if q(x) = q for all x , v(x) is symmetric around x = s̄/2 and has a hump shape.
As a result, v(s̄) ≤ v(s) for any s ∈ S. This in turn means that∫ s̄

0

v(s)ds > s̄v(s̄) =⇒

1−
s̄v(s̄)(1− ta)∫ s̄

0 v(s)ds
> 0.

The World Planner Solution

Recall that the world planner solution is given by

iw (x)δ =
2bLγ (1− α) (1− tw )

q

(
φL,w (x, τ) + φR,w (x, τ)

)
,
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where

φL,w (x, τ) =

∫ x
0

[∫ 2s̄
x τ (1−σ)I(t,s)

(
1 + 1

δ−1

∫ t
s i
w (r)1−δ dr

)γ(1−σ)−1
dt

]
ds∫ 2s̄

0 v(s)ds
,

φR,w (x, τ) =

∫ 2s̄
x

[∫ x
0 τ

(1−σ)I(t,s)
(

1 + 1
δ−1

∫ s
t i

w (r)1−δ dr
)γ(1−σ)−1

dt

]
ds∫ 2s̄

0 v(s)ds
.

The derivative of φL,w (x, τ) with respect to x is given by(
φL,w (x, τ)

)′
x

=∫ 2s̄
x τ (1−σ)I(t,x)

(
1 + 1

δ−1

∫ t
x i
w (r)1−δ dr

)γ(1−σ)−1
dt −

∫ x
0 τ

(1−σ)I(x,s)
(

1 + 1
δ−1

∫ x
s i

w (r)1−δ dr
)γ(1−σ)−1

ds∫ 2s̄
0 v(s)ds

.

Similarly,(
φR,w (x, τ)

)′
x

=

−
∫ x

0 τ
(1−σ)I(t,x)

(
1 + 1

δ−1

∫ x
t i

w (r)1−δ dr
)γ(1−σ)−1

dt +
∫ 2s̄
x τ (1−σ)I(x,s)

(
1 + 1

δ−1

∫ s
x i

w (r)1−δ dr
)γ(1−σ)−1

ds∫ 2s̄
0 v(s)ds

.

This implies that if τ > 1, then

lim
x→s̄−0

(
φL,w (x, τ)

)′
x

=

τ1−σ ∫ 2s̄
s̄

(
1 + 1

δ−1

∫ t
s̄ i
w (r)1−δ dr

)γ(1−σ)−1
dt −

∫ s̄
0

(
1 + 1

δ−1

∫ s̄
s i

w (r)1−δ dr
)γ(1−σ)−1

ds∫ 2s̄
0 v(s)ds

< 0, and

lim
x→s̄−0

(
φR,w (x, τ)

)′
x

=

−
∫ s̄

0

(
1 + 1

δ−1

∫ s̄
t i

w (r)1−δ dr
)γ(1−σ)−1

dt + τ1−σ ∫ 2s̄
s̄

(
1 + 1

δ−1

∫ s
s̄ i

w (r)1−δ dr
)γ(1−σ)−1

ds∫ 2s̄
0 v(s)ds

< 0.

In the same way, one can show that limx→s̄+0

(
φL,w (x, τ)

)′
x
and limx→s̄+0

(
φR,w (x, τ)

)′
x
are positive.

As a result, the infrastructure profile has a double-hump shape. At Home, it is decreasing around s̄, at
Foreign it is increasing.

Proof of Lemma 2

As in the proof of Proposition 1, we first formulate and analyze a discrete modification of the social
planner’s maximization problem, which approximates the actual continuos maximization problem, and
then take the limit. Recall that the home social planner solves

{
iH(x), tH

}
x∈[0,s̄]

= arg max
t,i(x)

{
(1− t)

(∫ s̄

0

v(x)dx

) 1−α
σ−1
∣∣∣∣q ∫ s̄

0

i (x) dx ≤ bLtH
}
,
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where

v(x) =

∫ 2s̄

0

τ (1−σ)I(x,z)T (x, z)1−σ dz

=

∫ x
0

(
1 + 1

δ−1

∫ x
z i (r)1−δ dr

)γ(1−σ)
dz +

∫ s̄
x

(
1 + 1

δ−1

∫ z
x i (r)1−δ dr

)γ(1−σ)
dz

+τ1−σ ∫ 2s̄
s̄

(
1 + 1

δ−1

∫ s̄
x i (s)1−δ ds + 1

δ−1

∫ z
s̄ i

F (s)1−δ ds
)γ(1−σ)

dz
.

To formulate the corresponding discrete maximization problem, we consider a uniform partition of the
[0, 2s̄]-interval given by {xi}i=0..2n, where x0 = 0, xn = s̄, and x2n = 2s̄. Then, the discrete analogue
of the continuos maximization problem can be written as follows (without loss of generality, we assume
that location n belongs to the home country):

{
iH(xi), t

H
}
i=0..n

= arg max
t,i(xi )

(1− t)

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

 ,
subject to

q

n∑
i=0

i (xi)4n ≤ bLt.

where

v(xi) = 4n
1 +

∑i−1
k=0

(
1 + 1

δ−1

i−1∑
j=k

i
(
xj
)1−δ4n

)γ(1−σ)

+
∑n
k=i+1

(
1 + 1

δ−1

k∑
j=i+1

i
(
xj
)1−δ4n

)γ(1−σ)

+τ1−σ∑2n
k=n+1

(
1 + 1

δ−1

n∑
j=i+1

i
(
xj
)1−δ 4n + 1

δ−1

k∑
j=n+1

iF
(
xj
)1−δ4n

)γ(1−σ)

and 4n = 1/n.

The first order conditions are given by

∂Λ

∂i (xi)
= 0, i = 0..n,

∂Λ

∂t
= 0,

where Λ is the corresponding Lagrange function. It is straightforward to see that

∂Λ

∂i (xi)
=

(1− t) (1− α)

σ − 1

(
n∑
i=0

v(xi)4n

) 1−α
σ−1
−1

4n
n∑
l=0

(v(xl))′i(xi ) − λ0 4n q,

∂Λ

∂t
= −

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

+ λ0bL.

We have that for i < l ,

(v(xl))′i(xi ) = (4n)2 γ(σ − 1)i(xi)
−δ

i∑
k=0

(
1 +

1

δ − 1

l−1∑
j=k

i
(
xj
)1−δ4n

)γ(1−σ)−1

,
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for i > l ,

(v(xl))′i(xi ) = (4n)2 γ(σ − 1)i(xi)
−δ

n∑
k=i

(
1 +

1

δ − 1

k∑
j=l+1

i
(
xj
)1−δ4n

)γ(1−σ)−1

+(4n)2 γ(σ−1)i(xi)
−δτ1−σ

2n∑
k=n+1

(
1 +

1

δ − 1

n∑
j=l+1

i
(
xj
)1−δ 4n +

1

δ − 1

k∑
j=n+1

iF
(
xj
)1−δ4n

)γ(1−σ)−1

.

Finally, (v(xl))′i(xi ) = 0 if i = l .

Thus, the optimal infrastructure profile,
{
iH(xi)

}
i=0..n

, solves the following system of equations:

qiH (xi)
δ

4nbLγ (1− α) (1− tH)
=

∑i−1
l=0

∑n
k=i

(
1 + 1

δ−1

k∑
j=l+1

iH
(
xj
)1−δ4n

)γ(1−σ)−1


∑n
i=0 v(xi)

+

∑i−1
l=0

∑2n
k=n+1 τ

1−σ

(
1 + 1

δ−1

n∑
j=l+1

iH
(
xj
)1−δ 4n + 1

δ−1

k∑
j=n+1

iF
(
xj
)1−δ4n

)γ(1−σ)−1


∑n
i=0 v(xi)

+

∑n
l=i+1

∑i
k=0

(
1 + 1

δ−1

l−1∑
j=k

iH
(
xj
)1−δ4n

)γ(1−σ)−1


∑n
i=0 v(xi)

.

Taking the limit, we obtain the solution of the continuous maximization problem:

qiH (x)δ

bLγ (1− α) (1− tH)
=

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s i
H (r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0 v(s)ds

+

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t i

H (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0 v(s)ds
.

+

τ1−σ ∫ x
0

(∫ 2s̄
s̄

(
1 + 1

δ−1

∫ s̄
s i

H (r)1−δ dr + 1
δ−1

∫ t
s̄ i
F (r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0 v(s)ds
.

Finally, the optimal tax rate solves

tH =
q
∫ s̄

0 i
H (s) ds

bL
.

Proof of Proposition 6

From the expression for iH(x), we can see that

δiH (x)δ−1
(
iH (x)

)′
=
bLγ (1− α) (1− tH)

q

(
φ̃
L,N

(x, τ) + φ̃
R,N

(x, τ)
)′
.
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It is straightforward to see that(
φ̃
R,N

(x, τ)
)′
x=0

> 0 and
(
φ̃
R,N

(x, τ)
)′
x=s̄

< 0.

Consider the derivative of φ̃
L,N

(x, τ) with respect to x . We have that

(
φ̃
L,N

(x, τ)
)′

=

∫ s̄
x

(
1 + 1

δ−1

∫ t
x i
H (r)1−δ dr

)γ(1−σ)−1
dt∫ s̄

0 v(s)ds
−

∫ x
0

(
1 + 1

δ−1

∫ x
s i

H (r)1−δ dr
)γ(1−σ)−1

ds∫ s̄
0 v(s)ds

+
τ1−σ ∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
x i

H (r)1−δ dr + 1
δ−1

∫ t
s̄ i
H (2s̄ − r)1−δ dr

)γ(1−σ)−1
dt∫ s̄

0 v(s)ds
.

As can be inferred from the above expression,
(
φ̃
L,N

(x)
)′
x=0

> 0. Moreover, as τ1−σ ≤ 1,

τ1−σ
∫ 2s̄

s̄

(
1 +

1

δ − 1

∫ t

s̄

iH (2s̄ − r)1−δ dr

)γ(1−σ)−1

dt−
∫ s̄

0

(
1 +

1

δ − 1

∫ s̄

s

iH (r)1−δ dr

)γ(1−σ)−1

ds ≤ 0,

implying that
(
φ̃
L,N

(x)
)′
x=s̄
≤ 0. Hence, we can conclude that

(
iH (x)

)′
x=0

=∞ (as iH (0)δ−1 = 0) and(
iH (x)

)′
x=s̄

is negative, but finite (as iH (s̄)δ−1 > 0).

Proof of Proposition 7

Recall that the infrastructure profile is determined by

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃
L,N

(x, τ) + φ̃
R,N

(x, τ)
)
.

It is straightforward to see that if there are additional transport costs for products produced in the foreign
country, then

φ̃
L,N

(x, τ) =

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s i
H (r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0

(∫ s̄
0 T (s, z)1−σ dz

)
ds + τ1−σ

∫ s̄
0

(∫ 2s̄
s̄ T (s, z)1−σ dz

)
ds

+

τ1−σ ∫ x
0

(∫ 2s̄
s̄

(
1 + 1

δ−1

∫ s̄
s i

H (r)1−δ dr + 1
δ−1

∫ t
s̄ i
H (2− r)1−δ dr

)γ(1−σ)−1
dt

)
ds∫ s̄

0

(∫ s̄
0 T (s, z)1−σ dz

)
ds + τ1−σ

∫ s̄
0

(∫ 2s̄
s̄ T (s, z)1−σ dz

)
ds

,

φ̃
R,N

(x, τ) =

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t i

H (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0

(∫ s̄
0 T (s, z)1−σ dz

)
ds + τ1−σ

∫ s̄
0

(∫ 2s̄
s̄ T (s, z)1−σ dz

)
ds
.

Therefore, to explore the direct effect of τ on iH (x), we need to analyze how changes in τ affect

φ̃
L,N

(x, τ) + φ̃
R,N

(x, τ). Specifically, we find that the sign of
(
φ̃
L,N

(x, τ) + φ̃
R,N

(x, τ)
)′
τ
is the same
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as the sign of the following expression (remember that taking the derivative, we ignore all the indirect
effects):

R(x)
d≡
∫ x

0

(∫ s̄

x

(
1 +

1

δ − 1

∫ t

s

iH (r)1−δ dr

)γ(1−σ)−1

dt

)
ds

∫ s̄

0

(∫ 2s̄

s̄

T (s, z)1−σ dz

)
ds

+

∫ s̄

x

(∫ x

0

(
1 +

1

δ − 1

∫ s

t

iH (r)1−δ dr

)γ(1−σ)−1

dt

)
ds

∫ s̄

0

(∫ 2s̄

s̄

T (s, z)1−σ dz

)
ds

−
∫ x

0

(∫ 2s̄

s̄

(
1 +

1

δ − 1

∫ s̄

s

iH (r)1−δ dr +
1

δ − 1

∫ t

s̄

iH (2s̄ − r)1−δ dr

)γ(1−σ)−1

dt

)
ds

×
∫ s̄

0

(∫ s̄

0

T (s, z)1−σ dz

)
ds.

As can be seen, R(x) is negative in some left neighborhood of x = s̄, implying that iH (x) falls for all
x from this neighborhood. Finally, as

∫ s̄
0 i

H (x) dx remains the same, iH (x) must rise at some locations
that are relatively far from the border.
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Appendix B: Discrete variant of the model

To match the moments, we consider a discrete version of our framework. We assume that there are 2n

locations uniformly distributed on [0, 2s̄], with n locations in each country. We define 4n = 2s̄/(2n− 1)

as the distance between any two adjacent locations. In discrete space, the costs of transportation costs
between i and j (i < j) are

T (i , j) =

(
1 +

4n
δ − 1

j−1∑
k=i

i (k)1−δ

)γ
, (29)

which can be rewritten as

T (i , j) =

(
1 +4n(j − i)

1
δ−1

∑j−1
k=i i (k)1−δ

j − i

)γ
,

such that transportation costs from i and j are determined by the product of distance between i and
j and the average level of infrastructure between the locations. For sufficiently large n, the above
discrete version of the model approximates the continuous specification (see the proof of Lemma 2 in the
Appendix for more details). In our exercise we set n at 100, meaning that there are 100 regions within
each country which trade with each other and foreign locations. Note that given n = 100 and s̄ = 500,
the discrete version of the model does not perfectly approximate the continuous one and, therefore,
should be considered as a discrete variation of the benchmark continuous model which is used to fit the
data.53

53In (29) T (i , j) does not depend on the level of infrastructure at location j . The reason behind is that when n
approaches infinity, it is not quantitatively important whether i(j)1−δ is included into the definition of T (i , j) or not.
In our exercise we found that when n is equal to 100, the inclusion of i(j)1−δ into T (i , j) does not substantially
affect the calibrated values of the parameters and the quantitative implications of the model.
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Appendix C: Further empirical results

Table .1 – Explaining variance in transportation costs in France

Dep. var.: Ln variable transport costs per km for transits through a département
(1) (2) (3) (4) (5) (6)

ln distance to Paris 0.034**
(0.015)

ln GTC to Paris 0.039**
(0.015)

ln geography 0.041*** 0.029*** 0.032*** 0.020** 0.004 0.001
(0.013) (0.011) (0.010) (0.008) (0.011) (0.011)

ln GDP -0.048*** -0.186*** -0.028 -0.019 -0.018
(0.013) (0.050) (0.052) (0.048) (0.047)

ln population 0.167*** -0.002 -0.006 -0.007
(0.056) (0.059) (0.056) (0.055)

ln area (km2) 0.087*** 0.068*** 0.067***
(0.013) (0.015) (0.014)

Constant 1.590*** 2.026*** 1.112*** 1.110*** 1.059** 0.967***
(0.009) (0.118) (0.334) (0.299) (0.285) (0.288)

N 94 94 94 94 94 94
adj.R2 0.158 0.289 0.333 0.583 0.609 0.616
F − stat. 10.06 9.443 10.66 41.91 41.25 45.17
RMSE 0.097 0.090 0.088 0.070 0.068 0.067
Robust standard errors in parentheses, ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
GTC: generalized transport cost. “Geography” measures the difference between the points
of highest and lowest altitude above sea level in a departement.
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Table .2 – The border effect and the role of infrastructure: OLS regressions

(1) (2) (3) (4) (5) (6)
Dep.var.: aggregate trade sectoral trade

Border (0,1) -1.419*** -1.003*** -0.784** -1.092*** -0.614*** -0.405***
(0.333) (0.335) (0.334) (0.144) (0.148) (0.148)

ln bird-flight distance -1.707*** -2.069***
(0.136) (0.0521)

ln road distance -1.708*** -2.053***
(0.147) (0.0551)

ln travel time -1.917*** -2.255***
(0.136) (0.0560)

Contiguity (0,1) 0.130 0.117 0.0400 0.122** 0.124** 0.0781
(0.135) (0.146) (0.127) (0.0563) (0.0590) (0.0565)

Common language (0,1) -0.189 -0.0959 -0.0201 -0.276*** -0.161** -0.0689
(0.171) (0.169) (0.171) (0.0760) (0.0761) (0.0766)

Constant 18.36*** 18.76*** 19.06*** 16.33*** 16.70*** 16.74***
(0.909) (1.015) (0.868) (0.476) (0.502) (0.478)

Observations 441 441 441 6,975 6,975 6,975
R-squared 0.949 0.949 0.950 0.894 0.893 0.892

Notes: OLS regressions. All models contain complete sets of separate exporter and importer fixed effects

(exporter * sector, importer * sector effects in case of sectoral trade data). Robust standard errors in

parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.
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