On the clonal approach in the mathematical theory of social choice

N. L. Polyakov

Financial University, Moscow

Mathematical methods of decision analysis in economics, finance and politics, HSE 16 November 2016

Mathematical methods of decision analysi

N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

- Arrow's impossibility theorem
 - Shelah's extension
- Complete classification of symmetric sets of r-choice function without 3 the Arrow property

decision analysi

- Arrow property for classes of decision rules
- 5 Some positive results

Arrow's impossibility theorem

N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic

Mathematical methods of decision analysi atic / 53

Arrow's impossibility theorem. Notation

- A a non-empty (finite) set (of alternatives);
- n a natural number (of voters), $n \ge 1$;
- (*individual*) preferences = (strict) linear order on A;
- Ord(A) the set of all (strict) linear orders on A;
- profile = n-tuple of linear orders on A;
- (universal) aggregation rule = function $f : (Ord(A))^n \to Ord(A)$.

Arrow's impossibility theorem. Definitions

Definition

An aggregation rule $f : (Ord(A))^n \to Ord(A)$ satisfies

Mathematical methods of decision analysi N. L. Polyakov (Financial University, Mos<mark>(On the clonal approach in the mathematic</mark>

-53

Arrow's impossibility theorem. Definitions

Definition

An aggregation rule $f : (\operatorname{Ord}(A))^n \to \operatorname{Ord}(A)$ satisfies U (unanimity) iff

$$(\forall a, b \in A) \left((\forall i < n) \ a \prec_i b \right) \to a \ f(\pi) \ b$$

-53

for any profile
$$\pi = (\prec_0, \prec_1, \dots, \prec_{n-1})$$
 in $(\operatorname{Ord}(A))^n$;

Mathematical methods of decision analysi N. L. Polyakov (Financial University, Mos<mark>(On the clonal approach in the mathematic</mark>

Arrow's impossibility theorem. Definitions

Definition

An aggregation rule $f : (Ord(A))^n \to Ord(A)$ satisfies U (unanimity) iff

$$(\forall a, b \in A) \left((\forall i < n) \ a \prec_i b \right) \to a \ f(\pi) \ b$$

for any profile $\pi = (\prec_0, \prec_1, \dots, \prec_{n-1})$ in $(Ord(A))^n$; IIA (independence of irrelevant alternatives) iff

$$(\forall a, b \in A) ((\forall i < n) \ a \prec_i b \leftrightarrow a \prec'_i b) \to (a \ f(\pi) \ b \leftrightarrow a \ f(\pi') \ b)$$

for all profiles $\pi = (\prec_0, \prec_1, \ldots, \prec_{n-1})$, $\pi' = (\prec'_0, \prec'_1, \ldots, \prec'_{n-1})$ in $(\operatorname{Ord}(A))^n$.

Mathematical methods of decision analysi

Arrow's impossibility theorem

An aggregation rule $f : (\operatorname{Ord}(A))^n \to \operatorname{Ord}(A)$ satisfies D (dictatorchip) iff f is a projection, i.e. there is i < n such that for all $\pi = (\prec_0, \prec_1, \ldots, \prec_{n-1}) \in (\operatorname{Ord}(A))^n$

$$f(\pi) = \prec_i$$
.

Theorem (K. Arrow, 1950,1963)

For any natural number $n \ge 1$, finite set A of cardinality $|A| \ge 3$, and aggregation rule $f : (Ord(A))^n \to Ord(A)$ if f satisfies U and IIA then f satisfies D.

- $[A]^2 = \{B \subseteq A : |B| = 2\};$
- 2-choice function on A function $\mathfrak{c}:[A]^2 \to A$ satisfying

$$(\forall p \in [A]^2) \mathfrak{c}(p) \in p.$$

Definition

A 2-choice function \mathfrak{c} on A is rational iff there is a (strict) linear order \prec on A such that $\mathfrak{c}(p) = \max_{\prec} p$ for all $p \in [A]^2$, i.e.

$$\mathfrak{c}(\{a,b\}) = b \leftrightarrow a \prec b$$

for all different $a, b \in A$.

- (*individual*) preferences = rational 2-choice function on A;
- $\Re_2(A)$ the set of all rational 2-choice functions on A;
- *n* a natural number (of voters);
- profile = n-tuple of rational 2-choice functions on A;
- (universal) aggregation rule = function $f : (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$.

Note

The function Θ that assigns to each strict linear order \prec the rational 2-choice function \max_{\prec} is a bijection between $\operatorname{Ord}(A)$ and $\mathfrak{R}_2(A)$.

Definition

An aggregation rule $f:(\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ satisfies

Definition

An aggregation rule $f: (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ satisfies U (unanimity) iff

 $(\forall p \in [A]^2) \, (\forall b \in p) \, ((\forall i < n) \, \mathfrak{c}(p) = b) \, \rightarrow f(\pi)(p) = b$

for any profile $\pi = (\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1})$ in $(\mathfrak{R}_2(A))^n$;

Definition

An aggregation rule $f: (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ satisfies U (unanimity) iff

$$(\forall p \in [A]^2) (\forall b \in p) ((\forall i < n) \mathfrak{c}(p) = b) \to f(\pi)(p) = b$$

for any profile $\pi = (\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1})$ in $(\mathfrak{R}_2(A))^n$; IIA (independence of irrelevant alternatives) iff

$$(\forall p \in [A]^2)((\forall i < n) \mathbf{c}_i(p) = \mathbf{c}'_i(p)) \to f(\pi)(p) = f(\pi')(p)$$

for all profiles
$$\pi = (\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1}), \quad \pi' = (\mathfrak{c}'_0, \mathfrak{c}'_1, \dots, \mathfrak{c}'_{n-1})$$

in $(\mathfrak{R}_2(A))^n$.

N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

Note

A function $f : (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ satisfies IIA iff for all $p \in [A]^2$ there is a function $f_p : p^n \to p$ such that

$$f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(p) = f_p(\mathfrak{c}_0(p),\mathfrak{c}_1(p),\ldots,\mathfrak{c}_{n-1}(p))$$

for all $p \in [A]^2$ and $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{R}_2(A)$. A function $f : (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ f satisfies IIA and U iff there is a conservative function $\widehat{f} : A^n \to A$ such that

$$f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(p)=\widehat{f}(\mathfrak{c}_0(p),\mathfrak{c}_1(p),\ldots,\mathfrak{c}_{n-1}(p)).$$

for all
$$p \in [A]^2$$
 and $\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1} \in \mathfrak{R}_2(A)$.

Conservative functions

Definition

A function $g: A^n \to A$ is conservative iff

$$(\forall x_0, x_1, \dots, x_{n-1} \in A) \bigvee_{i < n} (g(x_0, x_1, \dots, x_{n-1}) = x_i).$$

-53

Mathematical methods of decision analysi N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

Arrow's impossibility theorem in terms of choice functions

An aggregation rule $f : (\operatorname{Ord}(A))^n \to \operatorname{Ord}(A)$ satisfies D iff f is a projection, i.e. there is i < n such that for all $\pi = (\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1}) \in (\mathfrak{R}_2(A))^n$

$$f(\pi) = \mathfrak{c}_i.$$

Theorem

For any natural number $n \ge 1$, finite set A of cardinality $|A| \ge 3$, and aggregation rule $f : (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ if f satisfies U and IIA then f satisfies D.

tical methods of decision analysi

Shelah's extension

N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic

Mathematical methods of decision analysi atic / 53

- A a non-empty (finite) set (of alternatives);
- r a natural number (technical parameter), $r \ge 1$;
- $[A]^r = \{ B \subseteq A : |B| = r \};$
- $\bullet \ r\text{-choice}$ function on A function $\mathfrak{c}: [A]^r \to A$ satisfying

$$(\forall p \in [A]^r) \mathfrak{c}(p) \in p.$$

• $\mathfrak{C}_r(A)$ – the set of all *r*-choice function on A;

Definition

A set $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$ is symmetric if for any function $\mathfrak{c} \in \mathfrak{D}$ and permutation $\sigma \in S_A$ the function \mathfrak{c}_{σ} defined by

$$(\forall p \in [A]^r) \mathfrak{c}_{\sigma}(p) = \sigma^{-1} \mathfrak{c}(\sigma p),$$

belongs to D.

Symmetric sets of r-choice functions

Exemples

- The set $\mathfrak{R}_2(A)$.
- The set of all function $\mathfrak{c} \in \mathfrak{C}_r(A)$ such that $\mathfrak{c}(p)$ is the median element in p according to some ordering (r is odd).
- The set $\{\mathfrak{c} \in \mathfrak{C}_2(A) \colon (\exists x \in A) (\forall y \in A \setminus \{x\}) \mathfrak{c}(\{x, y\}) = x\}.$
- Let \prec be a strict partial order on A and $\mathfrak{C}_r^{\prec}(A)$ a set of all functions $\mathfrak{c} \in \mathfrak{C}_r(A)$ such that $\mathfrak{c}(p)$ is some non-dominated element of p, i.e.

$$(\forall x \in p) \mathfrak{c}(p) \not\prec x.$$

Let W be a set of strict partial order on A closed under isomorphisms. The set $\bigcup_{\prec \in W} C_r^\prec(A)$ is symmetric.

Mathematical methods of decision analysi

- (*individual*) preferences = r-choice function on A;
- n a natural number (of voters), $n \ge 1$;
- profile = n-tuple of r-choice functions on A;
- aggregation rule = function $f : (\mathfrak{C}_r(A))^n \to \mathfrak{C}_r(A);$
- $\mathcal{V}(A,r)$ the set of all aggregation rules (of all arity $n \ge 1$).

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is normal iff

(i)
$$f(\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})(q) \in {\mathbf{c}_0(q), \mathbf{c}_1(q), \dots, \mathbf{c}_{n-1}(q)}$$

for all $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1} \in \mathbf{C}_r(A)$ and $q \in [A]^r$;

Mathematical methods of decision analysi

N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is normal iff

(i)
$$f(\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})(q) \in {\mathbf{c}_0(q), \mathbf{c}_1(q), \dots, \mathbf{c}_{n-1}(q)}$$

for all $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1} \in \mathfrak{C}_r(A)$ and $q \in [A]^r$;
(ii) $(\mathbf{c}_0(q), \mathbf{c}_1(q), \dots, \mathbf{c}_{n-1}(q)) = (\mathbf{c}'_0(q), \mathbf{c}'_1(q), \dots, \mathbf{c}'_{n-1}(q)) \rightarrow f(\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})(q) = f(\mathbf{c}'_0, \mathbf{c}'_1, \dots, \mathbf{c}'_{n-1})(q)$
for all $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1}, \mathbf{c}'_0, \mathbf{c}'_1, \dots, \mathbf{c}'_{n-1} \in \mathfrak{C}_r(A)$ and $q \in [A]^r$.

Mathematical methods of decision analysi N. L. Polyakov (Financial University, Most<mark>On the clonal approach in the mathematic</mark> / 53

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is normal iff

(i)
$$f(\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})(q) \in {\mathbf{c}_0(q), \mathbf{c}_1(q), \dots, \mathbf{c}_{n-1}(q)}$$

for all $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1} \in \mathbf{C}_r(A)$ and $q \in [A]^r$;
(ii) $(\mathbf{c}_0(q), \mathbf{c}_1(q), \dots, \mathbf{c}_{n-1}(q)) = (\mathbf{c}'_0(q), \mathbf{c}'_1(q), \dots, \mathbf{c}'_{n-1}(q)) \rightarrow f(\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1})(q) = f(\mathbf{c}'_0, \mathbf{c}'_1, \dots, \mathbf{c}'_{n-1})(q)$
for all $\mathbf{c}_0, \mathbf{c}_1, \dots, \mathbf{c}_{n-1}, \mathbf{c}'_0, \mathbf{c}'_1, \dots, \mathbf{c}'_{n-1} \in \mathbf{C}_r(A)$ and $q \in [A]^r$.

• $\mathcal{N}(A, r)$ – the set of all normal aggregation rules in $\mathcal{V}(A, r)$.

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is simple iff

$$\begin{aligned} (\mathfrak{c}_0(p),\mathfrak{c}_1(p),\ldots,\mathfrak{c}_{n-1}(p)) &= (\mathfrak{c}_0(q),\mathfrak{c}_1(q),\ldots,\mathfrak{c}_{n-1}(q)) \rightarrow \\ f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(p) &= f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(q) \\ \text{for all } \mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1} \in \mathfrak{C}_r(A) \text{ and } p,q \in [A]^r. \end{aligned}$$

Mathematical methods of decision analysi N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic / 53

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is simple iff

$$\begin{aligned} (\mathfrak{c}_0(p),\mathfrak{c}_1(p),\ldots,\mathfrak{c}_{n-1}(p)) &= (\mathfrak{c}_0(q),\mathfrak{c}_1(q),\ldots,\mathfrak{c}_{n-1}(q)) \rightarrow \\ f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(p) &= f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(q) \\ \text{for all } \mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1} \in \mathfrak{C}_r(A) \text{ and } p,q \in [A]^r. \end{aligned}$$

• $\mathcal{S}(A,r)$ – the set of all simple aggregation rules in $\mathcal{V}(A,r)$.

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is a dictatorship iff it is a projection, i.e. iff there is i < n such that $f(\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1}) = \mathfrak{c}_i$ for all $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{C}_r(A)$

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ is a dictatorship iff it is a projection, i.e. iff there is i < n such that $f(\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1}) = \mathfrak{c}_i$ for all $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{C}_r(A)$

• $\mathcal{E}(A,r)$ – the set of all dictatorships in $\mathcal{V}(A,r)$.

N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

Note

An *n*-ary function $f \in \mathcal{V}(A, r)$ is normal iff for all $p \in [A]^2$ there is a conservative function $f_p: p^n \to p$ such that

$$f(\mathfrak{c}_0,\mathfrak{c}_1,\ldots,\mathfrak{c}_{n-1})(p) = f_p(\mathfrak{c}_0(p),\mathfrak{c}_1(p),\ldots,\mathfrak{c}_{n-1}(p))$$

for all $p \in [A]^2$ and $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{C}_r(A)$. An *n*-ary function $f : (\mathfrak{R}_2(A))^n \to \mathfrak{R}_2(A)$ f is normal and simple iff there is a conservative function $\widehat{f} : A^n \to A$ such that

$$f(\mathbf{c}_0,\mathbf{c}_1,\ldots,\mathbf{c}_{n-1})(p) = \widehat{f}(\mathbf{c}_0(p),\mathbf{c}_1(p),\ldots,\mathbf{c}_{n-1}(p)).$$

for all $p \in [A]^2$ and $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{C}_r(A)$.

Definition

An *n*-ary aggregation rule $f \in \mathcal{V}(A, r)$ preserves a set $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$ (or f is a polymorphism of \mathfrak{D}) and \mathfrak{D} is preserved under f iff

$$f(\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n)\in\mathfrak{D}$$
 for all $\mathfrak{c}_1,\mathfrak{c}_2,\ldots,\mathfrak{c}_n\in\mathfrak{D}$.

The set of all $f \in \mathcal{V}(A, r)$ that preserves $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$ is denoted by $\mathrm{pol}\,\mathfrak{D}$.

Definition

- A set $\mathfrak{D} \subseteq \mathfrak{C}_r(A)$
 - has the Arrow property iff

$$\operatorname{pol} \mathfrak{D} \cap \mathcal{N}(A, r) = \mathcal{E}(A, r).$$

• has the simple Arrow property iff

$$\operatorname{pol} \mathfrak{D} \cap \mathcal{N}(A, r) \cap \mathcal{S}(A, r) = \mathcal{E}(A, r).$$

N. L. Polyakov (Financial University, Most<mark>On the clonal approach in the mathematic</mark>

Shelah's theorem on the Arrow property

Theorem (S. Shelah, 2005)

Let A be a finite set. Then there are natural numbers r_1, r_2 (e.g. $r_1 = r_2 = 7$) such that for any natural number $r, r_1 \leq r \leq |A| - r_2$, any non-empty proper symmetric subset \mathfrak{D} of the set $\mathfrak{C}_r(A)$ has the Arrow property.

N. L. Polyakov (Financial University, Mos<mark>c</mark>On the clonal approach in the mathematic

Complete classification of symmetric sets of *r*-choice function without the Arrow property

-53

Mathematical methods of decision analysi N. L. Polyakov (Financial Unive<u>rsity, Mos</u>cOn the clonal approach in the mathematic

Exceptional cases: $\mathfrak{C}_3^K(A)$

Let |A| = 4 and let K be the *Klein four-group* of permutations of A. For any sets $p, q \in [A]^3$ there is only one permutation $\sigma_{p,q} \in K$ for which

$$q = \sigma_{p,q}(p).$$

• $\mathfrak{C}_3^K(A)$ is the set of all functions $\mathfrak{c} \in \mathfrak{C}_3(A)$ such that

$$\mathfrak{c}(q) = \sigma_{p,q}\mathfrak{c}(p)$$
 for all $p, q \in [A]^3$.

Mathematical methods of decision analysi N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic / 53 Exceptional cases: $\mathfrak{C}_3^K(A)$

The set $\mathfrak{C}_3^K(A)$ is symmetric and it contains exactly three elements $\mathfrak{c}_0, \mathfrak{c}_1, \mathfrak{c}_2$ (we denote $A = \{a, b, c, d\}$):

q	$\mathfrak{c}_0(q)$	$\mathfrak{c}_1(q)$	$\mathfrak{c}_2(q)$
$\{a, b, c\}$	a	b	С
$\left\{a, b, d\right\}$	b	a	d
$\{a, c, d\}$	c	d	a
$\{b, c, d\}$	d	c	b

without the Arrow property

Exceptional cases: $\mathfrak{C}_3^K(A)$

Let the conservative function $w \colon A^2 \to A$ be defined by

w	a	b	c	d
a	a	a	c	d
b	b	b	c	d
c	a	b	c	c
d	a	b	d	d

Let the 2-ary simple normal aggregation rule $f \in \mathcal{V}(A,3)$ be defined by

$$f_q(x,y) = w(x,y)$$

for all $q \in [A]^3$ and $x, y \in q$.

without the Arrow property

Exceptional cases: $\mathfrak{C}_3^K(A)$

We have

f	\mathfrak{c}_0	\mathfrak{c}_1	\mathfrak{c}_2
\mathfrak{c}_0	\mathfrak{c}_0	\mathfrak{c}_0	\mathfrak{c}_2
\mathfrak{c}_1	\mathfrak{c}_1	\mathfrak{c}_1	\mathfrak{c}_2
\mathfrak{c}_2	\mathfrak{c}_0	\mathfrak{c}_1	\mathfrak{c}_2

Proposition

The set $\mathfrak{C}_3^K(A)$ is preserved by the normal and simple aggregation rule f. So, $\mathfrak{C}_3^K(A)$ is non-empty proper symmetric subset of the set $\mathfrak{C}_3(A)$ without the simple Arrow property.

Exceptional cases: $\mathfrak{C}_2^i(A)$

Let r = 2 and $|A| \ge 2$. For any $a \in A$, $i \in \{0, 1\}$ and $\mathfrak{c} \in \mathfrak{C}_2(A)$ $Z_a^{\mathfrak{c}} = \{b \in A \setminus \{a\} \colon \mathfrak{c}(\{a, b\}) = a\},$ $W_i^{\mathfrak{c}} = \{a \in A \colon |Z_a^{\mathfrak{c}}| = i \pmod{2}\}.$

•
$$\mathfrak{C}_2^i(A) = \{ \mathfrak{c} \in \mathfrak{C}_2(A) \colon W_{(1-i)}^\mathfrak{c} = \varnothing \}.$$

Exemple

$$A = \{a, b, c\}, \mathfrak{C}_{2}^{1}(A) = \{\mathfrak{c}_{0}, \mathfrak{c}_{1}\}.$$

q	$\mathfrak{c}_0(q)$	$\mathfrak{c}_1(q)$
$\{a,b\}$	b	a
$\{b,c\}$	c	b
$\{a,c\}$	a	с

N. L. Polyakov (Financial University, Mosc<mark>On the clonal approach in the mathematic</mark>

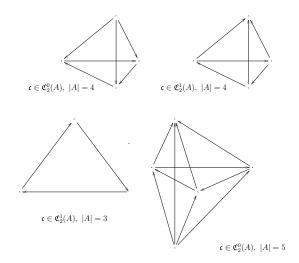
Mathematical methods of decision analysi

Exceptional cases: $\mathfrak{C}_2^i(A)$

Another definition. Any function $\mathfrak{c} \in \mathfrak{C}_2(A)$ may be represented by the tournament $\Gamma_{\mathfrak{c}} = (A, E)$ where

$$E = \{(a,b) \in A^2 \colon a \neq b \land \mathfrak{c}(\{a,b\}) = b\}.$$

• The sets $\mathfrak{C}_2^0(A)$ and $\mathfrak{C}_2^1(A)$ are the sets of all functions $\mathfrak{c} \in \mathfrak{C}_2(A)$ such that the *indegree* of any node of the tournament $\Gamma_{\mathfrak{c}}$ is even (respectively, odd).



Exceptional cases: $\mathfrak{C}_2^i(A)$

For any non-empty set A the 3-ary normal simple aggregation rule $\ell^A \in \mathcal{V}(A,2)$ is defined by

$$\ell^A_q(x,x,y) = \ell^A_q(x,y,x) = \ell^A_q(y,x,x) = y$$

for all $q \in [A]^2$ and $x, y \in q$.

Proposition

Each of the sets $\mathfrak{C}_2^0(A)$, $\mathfrak{C}_2^1(A)$, and $\mathfrak{C}_2^0(A) \cup \mathfrak{C}_2^1(A)$ is preserved by the normal and simple aggregation rule ℓ^A . So, it does not has the simple Arrow property. Besides, each of these sets is symmetric, and

$$\mathfrak{C}_2^0(A) \cup \mathfrak{C}_2^1(A) \neq \mathfrak{C}_2(A).$$

Complete classification of symmetric sets of r-choice function without the Arrow property

Theorem (N. Polyakov, 2014)

Let A be a finite set, r be a natural number, and \mathfrak{D} be a non-empty proper symmetric subset of the set $\mathfrak{C}_r(A)$. Then the set \mathfrak{D} does not has the Arrow property if and only if one of the following conditions holds:

Arrow property for classes of decision rules

N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematical methods of decision analysic / 53

- Q a non-empty (finite) set (of conditions);
- A a non-empty (finite) set (of solutions);
- $\mathfrak{D} \subseteq {}^{Q}A$ a set (of decision rules).

Definition

A set $\mathfrak{D} \subseteq {}^{Q}A$ is (weakly) symmetric iff for any permutation σ of A there is a permutation σ^* of Q such that for all function $\mathfrak{c} \in \mathfrak{D}$ the functions \mathfrak{c}_{σ} and $\widetilde{\mathfrak{c}}_{\sigma}$ defined by

$$\mathfrak{c}_{\sigma}(q) = \sigma^{-1}\mathfrak{c}(\sigma^*q)$$
 and $\widetilde{\mathfrak{c}}_{\sigma}(q) = \sigma\mathfrak{c}\left((\sigma^*)^{-1}q\right)$

belong to \mathfrak{D} .

Exemples

- $Q = [A]^r$, $\mathfrak{D} = \mathfrak{C}_r(A)$;
- $Q = \mathcal{P}(A) \setminus \{\emptyset\}$, \mathfrak{D} is a set of all (total) choice functions;
- Q is a set of subsets of A enriched with some additional structure, for example
 - Q is a set of all linear orders on A,
 - Q is a set of non-empty multisets such that the underlying set of elements is a subset of A,

ds of decision analysi

and \mathfrak{D} is a set of choice function;

• Q is a set of all linear orders on some set B, $A = \mathcal{P}(B)$, $\mathfrak{D} = {}^QA$.

- n a natural number (of voters), $n \ge 1$;
- profile = n-tuple of decision rules in \mathfrak{D} ;
- (simple) aggregation rule = conservative function $f: A^n \to A$;
- $\mathcal{V}(A)$ the set of all simple aggregation rules (of all arity $n \ge 1$).

Definition

A function $f : A^n \to A$ preserves a set $\mathfrak{D} \subseteq {}^QA$ and \mathfrak{D} is preserved under f iff for all $\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1} \in \mathfrak{D}$ the set \mathfrak{D} contains the function $f(\mathfrak{c}_0, \mathfrak{c}_1, \ldots, \mathfrak{c}_{n-1})$ defined by

$$f(\mathbf{c}_0,\mathbf{c}_1,\ldots,\mathbf{c}_{n-1})(q) = f(\mathbf{c}_0(q),\mathbf{c}_1(q),\ldots,\mathbf{c}_{n-1}(q))$$

for all $q \in Q$.

- $\operatorname{pol} \mathfrak{D}$ the set of all functions $f : A^n \to A$ (of any arity n) that preserve a set $\mathfrak{D} \subseteq {}^QA$;
- $\operatorname{inv}_Q f$ the set of all sets $\mathfrak{D} \subseteq {}^Q A$ that is preserved under a function $f: A^n \to A$;
- for all sets $\mathcal{F} \subseteq \bigcup_{n < \omega} {}^{A^n}\!A$ and $\mathbb{D} \subseteq \mathcal{P}({}^Q\!A)$

$$\operatorname{inv}_Q \mathcal{F} = \bigcap_{f \in \mathcal{F}} \operatorname{inv}_Q f \text{ and } \operatorname{pol} \mathbb{D} = \bigcap_{\mathfrak{D} \in \mathbb{D}} \operatorname{pol} \mathfrak{D}.$$

N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic

Theorem

The couple (inv_Q, pol) is a Galois correspondence between the Boolean lattices $\mathcal{P}(\bigcup_{n<\omega} A^n A)$ and $\mathcal{P}(\mathcal{P}(^QA))$. Galois-closed sets $\mathcal{F} \subseteq \bigcup_{n<\omega} A^n A$ are closed under composition and contain all projections, i.e. is clones. If a set $\mathfrak{D} \subseteq {}^QA$ is symmetric, then the clone $pol \mathfrak{D}$ is symmetric, i.e. for all permutation σ of A and n-ary function $f \in pol \mathfrak{D}$ the clone $pol \mathfrak{D}$ contains a function $f_{\sigma} : A^n \to A$, defined by

$$f_{\sigma}(\mathbf{a}) = \sigma^{-1} f(\sigma \mathbf{a})$$

methods of decision anal

for all $\mathbf{a} \in A^n$.

Definition

The set $\mathfrak{D} \subseteq {}^{Q}A$ has a (simple) Arrow property iff for any natural number n and any n-ary function $f \in \operatorname{pol} \mathfrak{D} \cap \mathcal{V}(A)$ there is a number $i \ (i < n)$ for which

$$(\forall \mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1} \in \mathfrak{D}) f(\mathfrak{c}_0, \mathfrak{c}_1, \dots, \mathfrak{c}_{n-1}) = \mathfrak{c}_i,$$

i.e.

$$f(\mathbf{a}) = a_i$$

for all *n*-tuples $\mathbf{a} \in \{(\mathfrak{c}_0(q), \mathfrak{c}_1(q), \dots, \mathfrak{c}_{n-1}(q)) : q \in Q, \mathfrak{c}_i \in \mathfrak{D}\}.$

Exemple

Let A be a finite set, r be a natural number, $2 \le r \le |A| - 1$, and \mathfrak{D} be a symmetric subset of $\mathfrak{C}_r(A)$. Let

•
$$Q = [A]^r \cup [A]^{r+1};$$

• \mathfrak{C} be the set of all choice functions \mathfrak{c} on Q such that $\mathfrak{c} \upharpoonright [A]^r \in \mathfrak{D}$.

Exemple

Then

- \mathfrak{C} is symmetric, $\mathfrak{C} \upharpoonright [A]^r = \mathfrak{D}$;
- \mathfrak{C} is preserved under the conservative function $f: A^{r+1} \to A$ defined by

$$f(\mathbf{x}) = \begin{cases} x_1, & \text{if } |\operatorname{ran} \mathbf{x}| = r+1; \\ x_0, & \text{if } |\operatorname{ran} \mathbf{x}| \le r. \end{cases}$$

for all $\mathbf{x} = (x_0, x_1, \dots, x_r) \in A^{r+1}$.

Exemple

q	$\mathfrak{c}_0(q)$	$\mathfrak{c}_1(q)$	 $\mathfrak{c}_r(q)$	$f(\mathbf{c}_0,\mathbf{c}_1,\ldots,\mathbf{c}_r)(q)$
$\{a_0, a_1, \ldots, a_r\}$	a_0	a_1	 a_r	a_1
$\{a_0, a_1, \ldots, a_{r-1}\}$	a_0	a_1	 a_1	a_0

 $\mathfrak C$ does not have the Arrow property.

Theorem

Let A and Q be a finite sets, and \mathfrak{D} be a symmetric subset of ${}^{Q}A$. Then there are finite sets $B \supseteq A$ and $P \supseteq Q$ and a symmetric set $\mathfrak{C} \subseteq {}^{P}B$ such that

• C does not have the Arrow property;

• ${}^{Q}A \cap \mathfrak{C} \upharpoonright Q = \mathfrak{D}.$

• \mathbb{B}_0 is the set of all sets $\mathfrak{B} \subseteq {}^Q\!A$ of the form

 $\{\mathfrak{c}\in{}^Q\!A:\mathfrak{c}(q)\in B\}$

where $q \in Q$ and $B \subseteq A$;

• \mathbb{B}_1 is the set of all sets $\mathfrak{B} \subseteq {}^Q\!A$ of the form

$$\{\mathfrak{c}\in {}^Q\!A:\mathfrak{c}(p)=a\vee\mathfrak{c}(q)=b\},$$

where $p, q \in Q$ and $a, b \in A$;

• $\mathbb{B}_2(R)$ is the set of all sets $\mathfrak{B} \subseteq {}^Q\!A$ of the form

$$\{\mathfrak{c}\in{}^{Q}A:\mathfrak{c}(q)=\sigma\mathfrak{c}(p)\},\$$

where R is a binary relation on $A^{<\omega}$, $p,q \in Q$, $\sigma \in S_A$ and $(\mathbf{b}, \sigma \mathbf{b}) \in R$ for all $\mathbf{b} \in A^{<\omega}$;

• $\mathbb{B}_3(\Pi)$ is the set of all sets $\mathfrak{B} \subseteq {}^Q\!A$ of the form

$$\{\mathfrak{c}\in {}^{Q}\!A:\mathfrak{c}\upharpoonright P\in \mathrm{inv}_{P}(\Pi_{B})\},\$$

where Π is a Post's class closed under duality, $B \in [A]^2$, Π_B is a clone on B naturally isomorphic to Π , $P \subseteq Q$.

Note

There are only six Post's classes $\Pi \subseteq T_{01}$ closed under duality: O_1 , D_1 , D_2 , L_4 , A_4 , T_{01} .

Definition

- A binary relation R on $A^{<\omega}$ is stable iff
 - **(**) $\mathbf{a} R \mathbf{b} \rightarrow \mathbf{a} = \sigma \mathbf{b}$ for some permutation σ of A;
 - **2** $\mathbf{a} R \mathbf{b} \to \sigma \mathbf{a} \tau R \sigma \mathbf{b} \tau$ for any permutation σ of A, natural number k and function $\tau : \{0, 1, \dots, k-1\} \to \operatorname{dom} \mathbf{a}$.

Let $\mathfrak{D} \subseteq {}^Q\!A$. For any natural number r

•
$$r(\mathfrak{D}) = \max_{q \in Q} |\{\mathfrak{c}(q) : \mathfrak{c} \in \mathfrak{D}\}|$$

• $Q_{\mathfrak{D},r} = \{q \in Q : |\{\mathfrak{c}(q) : \mathfrak{c} \in \mathfrak{D}\}| \le r\}$
• $\mathfrak{D}_r = \mathfrak{D} \upharpoonright Q_{\mathfrak{D},r}$
• $\mathfrak{D}_r^+ = \{\mathfrak{c} \in {}^Q A : \mathfrak{c} \upharpoonright Q_{\mathfrak{D},r} \in \mathfrak{D}_r\};$

Arrow property for classes of decision rules

Theorem

Let A and Q be non-empty finite sets. Let $\mathfrak{D} \subseteq {}^{Q}A$ be a symmetric set without Arrow property. Then there are a stable binary relation R on $A^{<\omega}$, a Post's class $\Pi \in \{O_1, D_1, D_2, L_4, A_4, T_{01}\}$ and a set $\mathbb{B} \subseteq \mathbb{B}_0 \cup \mathbb{B}_1 \cup \mathbb{B}_2(R) \cup \mathbb{B}_3(\Pi)$ such that one of two following conditions holds

- there is a natural number $r < r(\mathfrak{D})$ such that $\mathfrak{D} = \mathfrak{D}_r^+ \cap \bigcap \mathbb{B}$, and any *n*-ary function $f \in \text{pol} \mathfrak{D} \cap \mathcal{V}(A)$ coincides with a projection on the set $A_{\leq r}^n = \{\mathbf{a} \in A^n : |\operatorname{ran} \mathbf{a}| \leq r\}$ (hence \mathfrak{D}_r has the Arrow property).

tical methods of decision analysi

Some positive results

N. L. Polyakov (Financial University, MostOn the clonal approach in the mathematic

Mathematical methods of decision analysis natic / 53

Theorem

Let A be a non-empty finite set, $|A| \ge 3$, and f be an arbitrary nondictatorship function in the clone \mathcal{D} generated by a (majority) function ∂ satisfying

$$\partial(x, x, y) = \partial(x, y, x) = \partial(y, x, x) = x.$$

Then a set $\mathfrak{D} \subseteq \mathfrak{C}_2(A)$ belong of $\operatorname{inv}_{[A]^2} f$ if and only if the set \mathfrak{D} is an intersection of a family of sets of the form

$$\{\mathfrak{c}\in\mathfrak{C}_2(A)\colon\mathfrak{c}(\{a,b\})=a\to\mathfrak{c}(\{c,d\})=d\}.$$

where $a, b, c, d \in A$.

Thank you!

Mathematical methods of decision analysi N. L. Polyakov (Financial University, Most^On the clonal approach in the mathematic