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Abstract

We subdivide trades on the London Stock Exchange according to their reaction
times. We show that faster trades are associated with smaller execution costs
than slower trades. However, most fast trades (reaction times less than one
second) lead to virtually no permanent price impact while slow trades have the
usual positive long run price impacts. The very fastest category of trades -
reaction times of less than one millisecond - are associated with large execution
costs when compared with other fast trades, but also have a large price impact
comparable in magnitude with slow trades. Slow trades and the very fastest
trades are therefore comparable across these two key dimensions, while other
fast trades are very different. We find no evidence supporting the supposition
that counter-parties can be manipulated into trading against faster traders.
Most fast traders are fairly innocuous, managing to reduce trading costs with-
out any adverse selction or manipulation concerns. The very fastest trades
pay a considerable amount to execute but bring information to the market.
Together, these results suggest that regulating trading speed in order to curb
issues thought to be associated with high-frequency trading may be at best a

∗Thanks to Cass Business School for supporting this work with a research pump-priming grant.
Early versions of this work were presented at the WBS Frontiers in Finance conference (2012), the
3L Finance Research Workshop in Brussels (2013), the Recent Advances in Algo and HF Trading
conference at UCL (2013), the 3rd Humboldt-Copenhagen Conference on Financial Econometrics
(2013), the Isaac Newton Institute (2013), the City University of Hong Kong Workshop on High-
Frequency and Algorithmic Trading (2014), the OMGI Quantitative Investment Seminar at Oxford
University (2014), the Cambridge-INET Workshop on Empirical Market Microstructure (2014) and
also at Liverpool University and Toulouse Business School. Useful comments were received from all
of these audiences. Opinions expressed in this paper are those of the authors and not of Blackrock,
Inc. All errors are our own.
†Faculty of Finance, Cass Business School, City University, London. Correspondence:

richard.payne@city.ac.uk.



very blunt tool and, at worst, may impose significant costs on those who use
low-latency systems to execute efficiently.

Keywords: Market microstructure; liquidity; transactions costs; asymmetric
information; London Stock Exchange; high-frequency trading.
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1 Introduction

The impact of automated trading and quoting by computers on equity price dynamics,

execution costs and market stability is firmly under the spotlight. Regulators around

the world are looking closely at how algorithmic trading affects the quality of markets

and are trying to decide whether and, if so, how market microstructures should be

altered so as to limit the scope of computer-generated trading.1

Central to this debate is the role of speed in trading.2 Speed is beneficial for algo-

rithms seeking to execute orders in an agency capacity, in that lower latency implies

a greater ability to capture attractive trading opportunities (Biais and Woolley, 2011;

Chaboud, Chiquoine, Hjalmarsson, and Vega, 2013). However, it is also argued that

speed differentials can facilitate the exploitation of slower traders by faster traders,

not due to any innate superior ability but simply by being able to respond to price-

relevant information more rapidly (Hasbrouck and Saar (2011) and Biais, Foucault,

and Moinas (2013)). Others have suggested that speed may facilitate manipulative

trading strategies (Biais and Woolley (2011)). It is not surprising then that regula-

tion based on speed is being discussed. For example, the European Securities and

Markets Authority (ESMA) has begun the consultation process for the review of the

Markets in Financial Instruments Directive (MiFID II). MiFID II intends to curb

HFT and ESMA has proposed a definition of HFT which is based on (i) the close

proximity of a firm’s server to the trading venue’s matching engine; (ii) a connection

bandwidth close to the maximum technologically available; and (iii) a high average

messaging frequency.3 If this definition is adopted it suggests that regulation will not

be based upon a participant’s trading strategy but on the participant’s technology

1In the UK, which is the focus of this study, the Department for Business, Innovation and Skills
set up a Foresight programme to investigate how computer-generated trading is impacting upon
UK markets. See http://www.bis.gov.uk/foresight/our-work/projects/current-projects/computer-
trading.

2It is worth noting that speed differentials are not a feature solely of automated markets. They
quite clearly existed in dealerships and floor-trading settings, albeit in less obvious technological
form.

3An alternative definition proposed by ESMA is based upon identifying firms with a low median
lifetime of modified/cancelled orders.
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and, in particular, on how quickly the participant can receive and process data and

then send a message to an exchange. This is, therefore, regulation based on speed

not style.

In the existing academic literature, there is general agreement that certain aspects of

low latency trading may be beneficial, for example high frequency market making.4

Brogaard, Hagströmer, Norden, and Riordan (2013), for example, demonstrate that

speed upgrades benefit market makers by improving their ability to control inventory.

This in turn reduces transactions costs for all participants and provides investors

with enhanced terms of trade. However, due to the previously described concerns

regarding manipulation and the role of latency differentials in generating information

asymmetries, fast liquidity-consuming activities are frequently seen as being harmful

and so worthy of further study.

Our paper contributes to this literature by focusing on a specific subset of order book

activity defined by speed. More precisely, we study low-latency liquidity-consuming

orders, which we term fast aggressive trades. In common with most publicly available

databases, the trade and quote data we use do not contain any identifiers for the

traders involved and thus we cannot relate orders to participants and then to their

trading style. Thus we use an alternative mechanism based purely on the reaction

speeds of orders.5 We examine each marketable order in the data and classify it

according to the age of the most recent standing limit order against which it executes:

‘Slow’ trades execute against limit orders that have stood in the book for at least ten

seconds and make up around 50% of all trades; ‘Immediate’ trades execute against

limit orders no more than one millisecond old and make up around 10% of all trades;

‘fast’ trades execute within 100ms and we break them down into three sub-categories

in the detailed analysis below. Together, these account for around 20% of trades.6

4There is still debate over whether these benefits are supplied by low latency traders in less
benign market conditions, however.

5Our data-based approach to the identification of computer-generated trading resembles the
analysis in Hasbrouck and Saar (2011) and Jiang, Lo, and Valente (2013).

6Of course, it is not guaranteed that a transaction against a very recently posted limit order is
the result of the actions of a low-latency liquidity-consuming algorithm. Just by chance, two orders
may be entered within milliseconds of one another and match. This is especially likely in more
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The remaining trades that execute between 100ms and 10 seconds are allocated to

two ‘intermediate’ categories. We then compare the characteristics of each speed

category with those of slow trades. In particular, we investigate whether trades from

faster systems tend to execute at lower cost than those from slower systems, whether

they carry more information and how they are timed relative to periods of possibly

manipulative activity.

We apply our identification mechanism to data on FTSE 100 stocks electronically

traded on the London Stock Exchange, the main UK stock market. The dataset spans

Jan-March 2015. Figure 1 highlights some of our key results. It plots average best bid

and offer curves prevailing around market buy orders of categories of traders, based

on all observations for all stocks in the sample. The quote prevailing immediately

before a transaction is timed at -1 on the horizontal axis (which is measured in event

time) and the mid-price is normalized to zero at quote -10. The quote at time 0 is

that prevailing immediately after the trade has consumed liquidity.

In terms of execution quality, Figure 1 makes clear that relatively fast buys trade

at significantly cheaper prices than do slow buys (executing on the dotted line offer

curve). Fast trades occur at prices more than 3bp better than equivalent slow trades.

This is the key positive aspect of fast trading highlighted in the literature.7 In the

cross-section, execution costs of fast trades are around 50% lower than for slow trades

in the most active stocks traded in London, while they are around 40% lower for the

least active tercile of large stocks. The benefits of using fast trading techniques in

terms of trade execution costs are clearly economically significant.

A second feature of fast trading is that their price impact is, on average, negligible. As

Figure 1 shows, once liquidity is consumed by a fast trade, bid, offer and mid-quotes

quickly return to almost exactly the same levels that were prevailing ten quotes

before the transaction. It appears that fast trades simply consume attractively-

liquid markets where orders, low or high-latency, are frequent. At the other end of the spectrum, a
computer algorithm might decide to hit a much older order if other market conditions have changed.
Thus our classification scheme is clearly not perfect but in the internet appendix to the paper we
demonstrate the robustness of our findings.

7Hendershott and Riordan (2012) provide similar evidence for German stocks.
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priced liquidity on offer and do not convey any price-relevant information to the

market. Slow trades provide a very different picture, and on average result in long-

lived movements in both bid and offer prices of almost 4bp.

One might expect there to be some degree of continuity between fast trades of differing

speeds. This does appear to be the case for all but immediate trades. Figure 1 show

that in the run-up to the trade (times between -8 and -2), the offer curves are (almost)

monotonically higher for progressively faster trades. The offer prices immediately

prior to the trade tend to bunch up but there is still an ordering that correlates with

speed. After the trade (time 0 to 10), the offer curves spread out again and faster

trades tend to see faster recovery towards the benchmark time -10 price.

It is striking, however, that immediate buys behave very differently from other very

fast trades. They are, in fact, much more similar to slow trades. They do not exe-

cute at particularly advantageous prices but they do have substantial long-term price

impacts. Immediate trades execute against limit orders less than one millisecond old

and their associated offer curve is very different from what we will term ”ultra-fast”

trades, which execute between 1-10ms. However, if we consider ”near-immediate”

trades, which execute against limit orders more than one millisecond but less than

two milliseconds old, we find that these resemble other fast trades, tending to exe-

cute against attractively priced offers and having no price impact in the long run.

Immediate trades are clearly different from all other fast trades, even those just very

marginally slower.

This lack of long-run price impact for most classes of fast trades is in stark contrast

with much of the high frequency trading literature which suggests that low latency

HFT trades in U.S. markets convey more information than slow trades (Brogaard,

Hendershott, and Riordan (2012), Kirilenko, Kyle, Samadi, and Tuzun (2011)). This

information asymmetry raises concerns about adverse selection costs being imposed

on higher latency traders, which are seen as the counterpoint to the execution cost

advantages outlined earlier (Biais, Foucault, and Moinas (2013), Brogaard, Hender-

shott, and Riordan (2012)). In our case, however, it appears that fast trading imposes
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no adverse selection costs on slow traders. This is not true of immediate trades whose

price impact after the trade is substantial. However, such immediate trades are very

comparable with our benchmark slow trades in that they bring information to the

market and pay substantial transactions costs to execute (despite their speed advan-

tages).

In reconciling our results with those of previous work, it is worth making clear that

our speed-based measure is not a measure of HFT. It will capture some of the ac-

tivities of high frequency traders (HFT) but it also includes many transactions from

execution algorithms, among others.8 We make no claim to be isolating HFT activ-

ity, nor do we regard this as a study of pure HFT. Our focus is on characteristics of

trading emanating from the fastest systems and thus the possible implications of regu-

lating trading speed, complementing theoretical work by Biais, Foucault, and Moinas

(2013), Budish, Cramton, and Shim (2013) and Pagnotta and Philippon (2011) and

related empirical work such as Brogaard, Hagströmer, Norden, and Riordan (2013).

Our final contribution is to examine whether counterparties are being induced to

transact against fast aggressive traders to the latter’s benefit. Much of the regulatory

discussion of high frequency trading has focused on possible manipulation of markets

by low latency traders. For example, spoofing, layering, and fading (as explained later

in the paper) are techniques which may all rely to some extent on speed differentials.

We therefore consider in detail both the actions of the counterparties of fast trades

and the evolution of markets in the run-up to fast aggressive trades. We find little

evidence that our fast trades are manipulative.

The rest of the paper is set out as follows. Our data and the method used to identify

fast trades are described in Section 2, together with some descriptive statistics. Sec-

tion 3 presents our empirical analysis of the performance of fast trades and considers

issues relating to manipulation. Section 4 concludes.

8The Association for Financial Markets (2010) reports that the estimated market share of all
HFT on the London stock exchange in 2010 was 33% and so the 6-25% captured by immediate-fast
trading is clearly not the whole story of HFT activity.
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2 Data

2.1 Data sources and coverage

We base our analysis on data from the London Stock Exchange provided by Reuters’

TRTH data service which we access via the European Capital Markets Cooperative

Research Centre. We observe trade and quote data for each stock, with quote data

covering the first three prices on each side of the order book. That is, we observe

the best three prevailing bid and offer prices and associated depths, together with

the price and size of all trades. All data are timed to the millisecond. Increases in

depth in the order book represent the entry of new limit orders and strict price and

time priority rules allow us to compute the age of any limit order at the time of its

execution.9

The stocks we consider all trade on the Stock Exchange electronic Trading Service

(SETS) electronic limit order book. The SETS order book uses standard trading

protocols and is open between 8.30 and 16.30 local UK time. As trading is opened

and closed with an auction period, we omit the first and last 5 minutes of the trading

day from our analysis. Our starting set of securities are the 100 constituent stocks

of the FTSE 100 index. Even though these are the largest listed companies in the

UK, activity and market capitalisation vary considerably in the cross-section and so

we perform most of our analysis separately on terciles of stocks grouped by average

daily trading volume (ADV) computed over each sample.

Based on the trade and best quote data we can compute the age of any limit order

at the time of its (partial or complete) execution.10 This will be the crucial measure

used in this paper to identify aggressive computer generated activities, as explained

9We only observe the best three prices on each side of the book. New depth outside these prices
is not be accurately timed. Such on order is first observed in our data when it becomes (part of)
the depth prevailing at the third best price, even if it has been in the book for much longer. The
age of such orders at execution will be underestimated.

10Executions against multiple standing orders in the limit order book, whether as a result of a
market order or a marketable limit order, result in several trade messages. We group these as one
event and compute the execution price as the appropriately weighted average execution price.
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in the next subsection.

2.2 Identifying the speed of aggressive trades

We define the trade speed of any market or marketable limit order to be the time

difference between the entry of that aggressive order and the most recent entry time

of a passive limit order that it at least partially executes against.11 Trades are ag-

gregated so that executions at the same price, with the same direction and at the

same millisecond are assumed to be one execution. Note too that the order book

may change through entries, cancellations or executions during the relevant interval

such that the entry of the limit order and execution need not be consecutive events.

This approach has the important advantage that low-latency trades can be identi-

fied using public data and without researchers needing to gain access to often highly

confidential trader identification data.

Each aggressive trade is then allocated to one of several categories based on speed:

1. ‘Immediate’ execution, where the trade speed is less than 1 millisecond

2. ‘Ultra-fast’ execution, where the trade speed is between 1-10ms

3. 10-25ms

4. 25-100ms

5. 100ms-1 second

6. 1 second - 10 seconds

7. ‘Slow’ trades, where the trade speed is greater than ten second

A few words about our terminology are in order at this point. We will call trades ‘slow’

if they execute against limit order that were posted more than ten seconds previously

11Our definition of fast trades is closely related to that used by Jiang, Lo, and Valente (2013), to
identify high frequency trades in the fixed income market.
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(i.e. they fall into category 7 in this list). The first four categories represent ‘fast’

trades and trades in categories 5 and 6 (so executing between 100ms and 10 seconds)

are intermediate. In our subsequent analysis, the ‘slow’ category will usually be our

benchmark and we explicitly compare the characteristics of faster trades with those

of these slow trades. However, our classification captures variations in fast trades

and we also compare characteristics between these. We term the very fastest trades

‘immediate’ but this is not literally correct. London Stock Exchange data are send to

Reuters with a one millisecond time-stamp. We therefore only use millisecond level

timings in the analysis. Immediate trades are those which are record in the data as

executing at the same time as the limit order (to the nearest millisecond) but in reality

they are generated by algorithms with a latency of less than one millisecond.12 The

‘immediate’ execution category will turn out to be particularly important. Trades in

this category appear different to all other fast trades and in fact look more like slow

trades. Because of this, we will spend time comparing ‘immediate’ trades with those

in the next category of 1-10ms which we will term ‘ultra-fast’. Finally, we acknowledge

that, with the possible exception of the immediate trades, the various categories are

obviously partitioned in a rather arbitrary way. However, the conclusions we reach

are invariant to alternative categorisations, as explained in more detail below.

We also recognise that our classification scheme is not foolproof. A market order

emanating from a high latency (i.e. slow) trader may, by chance, execute against a

limit order that was entered only a few milliseconds previously. However, the chances

of this happening are slight relative to the probability of such a trade resulting from

a low latency trader, particularly for less actively traded stocks.

A related concern is that we might systematically misclassify fast trades under partic-

ular market conditions (e.g. when trading activity is particularly heavy). To better

understand this issue we compute stock-by-stock correlations between time-series of

fast trade proportions (defined as the number of fast trades divided by the total num-

ber of trades) and the number of trades, trading volume, and average bid-ask spreads,

12Trades in the Reuters TRTH database are timed to the microsecond but this is a spurious level
of accuracy.
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each computed over five-minute intervals. We then average the correlations across

stocks. Correlations are low - the highest is just 0.11 for fast proportions and the

number of trades, and the lowest just 0.08 for fast proportions and spreads - suggest-

ing that our FAT arrivals are not particularly strongly related to market conditions.

We also examine intraday patterns of the same variables (Figure 2). Trading activ-

ity on the London Stock Exchange increases noticeably towards the end of the day,

while spreads decline from their initially high levels before plateauing.13 However,

the proportion of fast trades is remarkably constant throughout the day. These same

patterns still hold if we split stocks into terciles by average daily trading volume. We

are therefore encouraged that our measure of fast trading is not driven by unusual or

particular market conditions.

At the other end of the spectrum, we will misclassify trades when a low latency trader

decides to hit an order that is minutes old, perhaps due to a public information release

or changes in market conditions in a related stock. We cannot measure the probability

of such a event occurring but suspect that it might happen frequently in our data. To

the extent that this means that our slow trades are contaminated with some faster

activity, any differences we find between the characteristics of fast and slow activity

are likely to be understatements of the true effects.

Figure 3 plots the average proportion of trades falling into four speed buckets for

each stock. Stocks are ordered by daily trading volume (low to high). The first

speed bucket in the figure corresponds to the ’immediate’ category discussed above,

namely execution within one millisecond. While there is cross-sectional variation

in the proportion of trades that fall into this category there is no obvious pattern

and the proportion oscillates around ten percent. The second bucket combines all

trades with execution speeds of 1-100ms. This bucket corresponds to ‘fast’ (but not

immediate) trades, pooling together categories 2-4 above. This bucket constitutes

around twenty percent of trades, slightly less for the least active stocks and rising to

around one-quarter of all trades for the most active stocks. The third bucket captures

13The single peak in trading volume is due to extremely unusual activity on the day that the
short sales ban in financial stocks was introduced. Excluding this day has no effect on our results.
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intermediate execution speeds of between 100ms and 10 seconds, and also captures

around twenty percent of trades for most stocks, rising to over one-third for the most

active few stocks. All other trades fall into the fourth bucket which corresponds to

the benchmark ‘slow’ category. Only one-third of trades fall into this category for

the most active stocks but this proportion rises steadily to a little over one-half as we

consider less active stocks. Nevertheless, for almost all stocks, the category contains

more trades than any other. Recall that Table 2 shows that slow trades are also

typically larger than faster trades. Slow trades are therefore the most common type

of trade and, when they occur, are also larger than the alternatives.

2.3 Descriptive statistics for fast aggressive trades

We first consider the simple cross-section variation in fast trading activity. Table

1 presents summary statistics averaged across stocks grouped into three terciles ac-

cording to ADV. T1 is the lowest ADV quintile (the least active stocks) and T3 the

most actively traded. Many of the basic descriptive statistics are as expected. T1

stocks have the largest mean bid-ask spread at nine basis points and smallest mean

trade size of GBP6,400 per transaction. Note that transactions with the exact same

time stamp and in the same direction are aggregated into one transaction for these

calculations. Though all shares we consider are constituents of the narrowly defined

benchmark FTSE100 index and hence are all actively traded in an absolute sense,

volume is significantly higher for top tercile stocks.

The final seven columns of Table 1 are perhaps of more interest. These give the

percentages of trades that fall into each of our trade speed categories. These do not

differ noticeably across terciles and so we focus on T3 figures in our discussion. A

little over 9.5% of trades are immediate, in that they at least partially execute against

a limit order that is less than one millisecond old. Ultra-fast trades that respond

within 10ms make up a further nine percent, and by the time we have accumulated

all trades responding within 100ms of the limit order being posted, fast trades account

for around 40% of all trades. This fast proportion is slightly higher for more actively
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traded shares which may, in part, reflect contamination of our speed measure when a

coincidental high latency trade is misclassified as a low latency one. It may equally

reflect the necessity of participants to trade more quickly in more liquid securities.

Table 2 details the mean trade size broken down by speed category. Trade size is,

on average, larger for more active stocks both overall and in each speed category.

More importantly, there is a pronounced U-shaped relationship between mean trade

size and speed. Mean trade sizes in slow and immediate categories are approximately

equal but are around one-third smaller in the 25-100ms speed category. This com-

parability of results for the very fastest and the very slowest categories will be a

recurring theme in the paper.

3 Empirical analysis

3.1 Execution Costs

Speed can be critical for executing trades at the best possible price. Many limit

orders are only fleetingly available and high latency traders may not be quick enough

to trade against them. It would therefore seem likely that faster traders can execute

trades cheaper than slower traders. One contribution of this section is to show just

how large the savings from being fast can be. The second contribution is to also

demonstrate that speed does not necessarily mean execution cost savings. The very

fastest trades which have almost immediate execution have higher execution costs

than somewhat slower trades.

We assign an execution cost to each trade. This cost is the distance, in basis points,

between the trade price and the mid-quote just prior to the execution of the trade and,

as SETS is fully order driven, must equal at least half the bid-ask spread and maybe

more if the order is large enough to walk the book.14 This measure is guaranteed

14EDIT: Note that, at the time of our sample, hidden orders were allowed but were very rare in
trading these stocks. When encountered, a hidden order could reduce the cost of trading below the
observed half spread.
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to be positive for buy orders in an electronic market, and for sell orders it is always

negative. Thus, we take the negative of the measure for sell trades. Denote that

measure for trade t in stock i by zi,t. We then regress execution costs on a constant,

seven dummy variables to indicate which speed category the trade lies in (denoted

j = 1...7) and controls for the size of the trade (measured in thousands of GBP),

overall stock-level trading volume (measured in millions of GBP) over the fifty trades

preceding the current trade, and stock volatility measured as the square root of the

sum of squared basis point returns over the preceding fifty trades:

zi,t =

j=7∑
j=1

β1,i,jSpeedi,j,t + β2,iSizei,t + β3,iσi,t + β4,iV olumei,t + ui,t (1)

This model is estimated by a pooled panel regression, both for the full sample of

stocks and separately for each ADV-based tercile of our stocks. There is no constant

term in the regression since the trade speed dummies saturate the model. All ex-

planatory variables except the trade speed indicator dummies are demeaned and so

the coefficients on the speed dummies give the mean execution cost for trades in that

category, controlling for trade size, volatility and volume.

Given that SETS is a pure limit order book, these execution cost regressions ask

whether, controlling for market conditions, there are systematic differences in bid-ask

spreads at times when trades of different speeds execute. Alternatively, do executions

in faster categories tend to capture smaller spreads than slower executions? Table 3

presents the results.

Consider first the control variables. As expected, execution costs are higher in more

volatile periods and for larger transactions. Conversely, but still as expected, execu-

tion costs are lower in high volume periods. The magnitudes of the effects of size and

volume decrease as we consider more liquid stocks but the magnitude of the effect of

volatility is increasing with average stock liquidity levels.

The column labelled ‘Slow’ gives the average basis point trading costs for our bench-
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mark category of slow executions (more than ten seconds after the arrival of the

preceding limit order against which it executes). These decline across activity ter-

ciles in the expected manner. Moving to the key variables in the analysis, the results

show that faster trades execute at significantly lower costs than slow trades in all

regressions. As we consider progressively faster categories of trade, we observe that

execution costs fall. The gain relative to slow trades is around 1.5 basis points for

trades in the 25-100ms category and almost 2.5bp for trades in the 1-10ms category

when we consider all stocks. Put differently, trades in the 25-100ms category are over

40% cheaper than slow trades, and ultra-fast trades in the 1-5ms category are over

60% cheaper than slow trades. Gains are proportionately larger for more liquid stocks

and ultra-fast executions in the most liquid stocks are 72.2% cheaper than equivalent

slow trades. Speed can translate into very significant execution cost savings.

Notably, however, transactions costs for the immediate category are higher than for

other very fast trades. The increase in execution costs for immediate trades relative

to ultra-fast 1-10ms trades is economically large 0.9bp for the most liquid stocks and

1.6bp for the least liquid tercile. It is apparent that speed helps to reduce execution

costs but the lowest latency trades do not appear to be driven by the need to shave yet

more off trading costs. In fact, execution costs of immediate trades are comparable

to those of trades in the relatively pedestrian 1-10 second category.

Equation (1) linearly conditions execution costs on trading activity. We proceed to

investigate whether the cost savings generated by trade speed change systematically

with trading activity by running regressions similar to (1), but for volume-based

subsamples of the data. For each stock we identify the quartile of data points with

the lowest volume and the quartile with the greatest volume (where volume is defined

over the past fifty trades). We then re-estimate equation (1) with stocks double-sorted

by ADV and volume (we also pool all stocks and only split by volume). Results are

reported in Table 4. The coefficient values show that average costs for the various

categories of trade execution speeds only differ slightly across the volume quartiles.

On average, as expected, realised spreads are slightly higher in less active periods
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for all categories. This average effect does not survive when we consider stocks split

into terciles so, for example, for the most actively traded stocks coefficients on the

speed categories are each lower in low volume periods than in high volume periods.

This surprising result is, however, driven by significant changes in the coefficients on

the conditioning variables. More importantly, the results split by ADV and volume

reveal the same patterns as found previously - slow trades are the most expensive to

execute and transactions costs fall for each progressively faster category of trades. The

exception is the immediate category. Immediate traders still resemble slow traders in

that they pay higher execution costs irrespective of activity levels and despite their

apparent speed advantage.

These results suggest that fast algorithms can offer very significant advantages in

execution cost over slow trades, especially for less actively traded stocks or

for less active trading periods. The speed advantage offered by fast trading

translates directly into access to much better prices. When trading and quoting is

less continuous (due to low natural trading interest or high tick sizes), the fastest

algorithms can take good prices as they appear and before other participants (human

or high latency algorithms) can react. Thus, as one would expect, speed directly

translates to lower costs of trading. However, the very fastest category of trades,

those that execute within a millisecond of a new limit order hitting the book, do not

trade to gain more savings. Execution costs of these trades are typically higher on

average than all other categories of fast trades. We conclude that traders willing to

pay substantial amounts of money to attain immediate execution gain in ways other

than reduced execution costs.

3.2 Information content

Computer-based trading, and in particular, high frequency trading is often charac-

terized as predatory and of no social value. However, much of the empirical literature

suggests that high frequency trading brings, on average, more information to the mar-

ket than does slower trading activity (Brogaard, Hendershott, and Riordan (2012),
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Brogaard, Hagströmer, Norden, and Riordan (2013)). As Martinez and Rosu (2013)

suggest, this may be due to HFTs receiving or being able to react to information

about payoff-relevant events ahead of the rest of the market. These findings help

to motivate theoretical models with information asymmetries (Martinez and Rosu

(2013), Foucault, Hombert, and Rosu (2013)) and lead to arguments in which com-

puter based trading is beneficial as it leads to more efficient markets. The downside

is that if fast traders are relatively more informed then trading against them will be

costly. If counter-parties are adversely selected by fast traders then they may widen

spreads and reduce depths, increasing transactions costs for all aggressive traders.

To investigate the extent to which fast trades contribute more information to markets

than slow trades, we measure the returns around trades and investigate whether they

are systematically different for trades of differing speeds. We estimate the equation

below by pooled OLS;

ri,t−k,t+k =

j=7∑
j=1

β1,i,jSpeedi,j,t + β2Sizei,t + β3σi,t + β4V olumei,t + εi,t (2)

where rt−k,t+k is initially defined to be the midquote return between k order events

before the transaction of interest and k order events after the trade (with sign swapped

if the current trade is a sell). Speedi,j,t is a dummy indicating which speed category

the relevant trade falls into (which again saturate the model so there is no constant

term included), and the other variables are controls for trade size (Sizet), market

volatility (σt) and market volume (V olumet) as defined in Section 3.1.

Panel A of Table 5 gives the results of the preceding regression based on k=10 for

the full sample and the three ADV-based activity categories. That is, we measure

the price impact of trades from the mid-quote prevailing ten order book events prior

to the transaction of interest until ten events later (‘post trade’). Results for the

conditioning variables suggest that larger transaction sizes increase price impacts,

while greater levels of trading activity decrease price impacts, as expected. Recent

price volatility is not significant.
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More importantly, we note that the price impact of a slow trade is over 3bp for

the most active stocks, rising to 4bp for the least liquid tercile of stocks. When

we consider faster trades three clear results emerge. First, trades in all other speed

categories have lower price impacts, on average, than trades in our benchmark slow

category. Average price impacts drop rapidly once we consider faster trades and even

relatively slow trades in the 1-10 second category have price impacts of less than

one basis point. Second, relatively fast trades in the 1ms-1 second speed categories

have either an insignificant or even negative price impact over this interval. The only

statistically significantly positive price impact estimates are for trades in the ultra-

fast 1-10ms category but even the largest of these are economically tiny at one-fifth

of a basis point. Most fast trades then appear to contain effectively no information.

The third finding is an exception to this statement. Immediate trades do have large,

positive and statistically significant price impacts. The magnitudes of their average

price impacts are not quite as large as those of slow trades but it is clear that this

category of fast trades behaves very differently from all other fast trades.

Panel B of the table considers price impact measured using the price on the side

of the market not directly affected by the deal. That is, using offer-side returns if

the trade is a market sell and bid-side returns for an aggressive buy. The analysis

of opposite side returns is designed to remove the mechanical liquidity-consumption

effect of a trade felt by using mid-quote (or same-side) returns. The price impacts of

all categories of trades are not much different from midpoint returns for all three ADV

terciles, suggesting that price impacts reported in Panel A do not contain important

liquidity effects. This is perhaps not surprising given our focus on FTSE100 index

constituent stocks.15

As in the previous section, we may be concerned that we have not conditioned on

market activity levels adequately by simply including recent trading volume in equa-

tion (2). We therefore again double sort the data by ADV and stock-level volume

15These results tally in their main features with the simple graphical analysis of quotes around
fast and slow trades presented in Figure 1. The magnitudes are not the same using the two methods,
but it should be noted that the regression analysis conditions out the effects of several variables that
are present in Figure 1.
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terciles and re-estimate equation (2). The results reported in Table 6 focus on oppo-

site side price impacts and should be compared with those given in Panel B of Table

5. The price impact of all trades is higher in the low volume subsample. Indeed,

all speed categories appear to have positive price impact during less active periods,

and almost all are both statistically and economically significant. In the high vol-

ume subsample, price impacts are lower and are significantly negative for fast trades.

Nevertheless, despite these differences in price impacts across volume quartiles, the

key finding that immediate and slow trades have much larger price impacts than fast

(and intermediate) trades remains, no matter how the samples are created.

Our findings both contrast and complement the HFT literature. In part, this is likely

because of our focus on speed measures whereas measures of HFT usually focus on

trading strategy and trader type. Speed is obviously a tool used by HFT, but it is

also used by many other agents. Baron, Brogaard, and Kirilenko (2014), for example,

note specifically that liquidity consuming HFT earn profits at the expense of other

market participants. It is also worth noting that their results are from US data,

and the complicated market architecture of the US as compared to the relatively

simple UK setting might generate profit opportunities for aggressive HFTs that are

available only for the very fastest in our UK data. Regardless of the source of the

differences, however, our results suggest that most fast trading is systematically less

well informed than slower trading.

3.3 Is there a dark side to fast aggressive trading?

So far our analysis has suggested that fast aggressive traders bargain hunt. Algo-

rithms lie in wait for attractively-priced limit orders, picking them off within fractions

of a second. The counterparties to these transactions achieve better prices than they

would through using market orders and with quite high probabilities of being filled.

As portrayed, this is the natural meeting of traders in the marketplace where both

sides are happy to transact at the executed price. However, it is known that certain

market conditions can lead traders to place attractively-priced limit orders (Biais,
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Hillion, and Spatt, 1995; Ranaldo, 2004) and commentators and regulators are con-

cerned that algorithms may be manipulating conditions to induce such orders which

can then be picked off through a FAT. Algorithmic traders are regularly associated

with dubious practices such as layering or spoofing, designed to mislead other partic-

ipants as to supply and demand for an asset, such that they make trading decisions

that can be exploited by fast algorithms. This is the perceived dark side of com-

puter based trading. In this section, we examine activity in the market around FAT

executions, looking for evidence that the FAT was exploiting manipulative practices.

We focus on a particular type of manipulation that is often discussed called ‘spoofing’

(also known as ‘layering’). Suppose a fast trader wishes to sell. By placing several

limit orders at or close behind the best bid, the fast trader gives the impression of

great depth on the buy side. The hope is that other traders will now submit buy limit

orders ahead of the prevailing bid, either in order to gain priority or because they feel

the imbalance in the order book is indicative of a likely price rise. The fast trader

then uses her speed advantage (i) to execute against the new attractively priced bid,

and (ii) to remove all of the spurious bid orders before they are executed.16

3.3.1 Do spoofing events increase the probability of fast trading?

Our empirical strategy defines spoofing episodes using our order level data. We define

a limit buy side spoofing event to have occurred for a stock if net quote activity,

defined as net new limit buy orders minus net new limit sell orders, in a 1 second

interval is greater than five times its stock-specific standard deviation.17 Limit sell

side spoofing events are defined analogously. The counts of spoofing events for ADV-

ordered stocks over the sample period are shown in Figure 4, where bid-side spoofing

columns are above the horizontal, and offer-side spoofing below the horizontal. On

average there are around 20,000 spoofing events per stock, with a tendency for there

16The fast trader will also be able to exploit her speed while waiting for an attractively priced bid
to arrive as, if the market begins to move at this time, she can quickly cancel her spoofing orders
before they are executed.

17Net new limit buy orders in a 1 second interval equal the number of new buy orders submitted
less the number of buy orders cancelled. Net new sell orders is calculated similarly.
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to be more events for less active stocks.

We then regress the number of trades within an interval of a specific type (fast or slow,

buys or sells) on lagged trades of all type (to control for correlations between order

flows); lagged returns, the lagged bid-offer spread, the lagged total number of orders

entered (qi,t−1), and the lagged net number of orders entered (netqi,t−1) to control for

market conditions; and indicator variables taking the value unity if buy or sell side

spoofing has been identified (BuySpoofi,t−1 or SellSpoofi,t−1). These final two terms

are our variables of interest and their coefficients reveal the impact of spoofing events

on the number of trades subsequently observed. Thus for fast aggressive buy trades

(BuyFast) we run the following regression:

BuyFastit =α + β1BuyFasti,t−1 + β2SellFasti,t−1 + β3BuySlowi,t−1 + β4SellSlowi,t−1

+ β5netqi,t−1 + β6reti,t−1 + β7qi,t−1 + β8spreadi,t−1

+ β9BuySpoofi,t−1 + β10SellSpoofi,t−1 + εt

(3)

If fast aggressive buy orders are exploiting a manipulative trading strategy we would

expect them to follow periods of sell side spoofing, such that β10 would be significantly

above zero.

All variable are measured at a one second frequency and all explanatory variables

except the spoofing indicators are demeaned before the regression is run. Table 7

gives the results, showing coefficient estimates from fixed effect panel estimations

(with heteroskedasticity robust standard errors). Note that coefficients on all right-

hand side variables except those on the four lagged trade variables are multiplied by

1000 to improve legibility.

The control variables are all statistically significant and generally have the expected

effects. β1 to β4 are all positive, suggesting that we observe more trades in both

directions when markets are active. Wider spreads lead to less fast trading on both

sides of the market (β8). More (gross) quoting activity leads to more fast trades (β7),
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while a higher number of new buy limit orders relative to new limit sell orders leads

to less fast buying but more fast selling (β5). These same patterns of effects are also

found if we use slow trades as dependent variables (results not reported but available

on request).

If fast trades are manipulative, we would expect the number of fast buys (sells) in

interval t to be positively related to sell-side (buy-side) spoofing events in interval

t − 1. There is some evidence of this occurring for the largest ADV quintile of

stocks, in that for those stocks the coefficient on buy (sell) spoofing in the fast sell

(buy) regression is twice as large as that on the sell (buy) spoofing regressor. These

relationships are highly statistically significant and relatively large in magnitude -

the coefficients on the relevant spoofing indicator variables are much larger than the

constant terms in these regressions. Thus, for the most active stocks, the number of

FAT observed following a spoofing episode is more than twice the number that would

be expected when all other explanatory variables are set to their average values.

However, we do not wish to over-emphasise these results. The goodness of fit statistics

in all of these regressions are very low and while the effect of a spoofing episode on the

number of fast trades observed is large relative to an unconditional benchmark, the

economic effects on trade counts are still extremely small. Nonetheless, for the most

active stocks, these findings suggest that spoofing-based manipulation may result in

slightly more FAT.18

For all other stocks, and for both the fast buys and fast sells, the effects of buy and

sell spoofing are almost completely identical and have the same sign. Thus both fast

buys and sells are somewhat more likely when there is extreme quoting behaviour on

one side of the market. This does not appear to be evidence of manipulation. It may

be more simply regarded as an indication that when markets are operating extremely

quickly (on either side), the probability of fast trades increases.

18We emphasise too that we have no evidence that fast traders are responsible for the spoofing
episodes. They may merely be using their speed advantages to react ahead of the competition to
such events.
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3.3.2 What happens to depth around fast and slow trades?

In the previous subsection we defined spoofing measures using rates of (net) new

order entry on the buy and sell sides of the book. These measures were then used to

predict fast trading activity. In this subsection we ask a slightly different question.

Taking the occurrence of a trade as an event, we measure the changes in order book

depth before and after so as to get a sense of what changes in book conditions are

driving trades.

This analysis is done separately for fast and slow trades and separately for depth

at the best bid and offer and at the first five levels of the order book. We measure

depth changes over 5 events pre and post trade and depth changes are expressed as

a proportion of average daily volume.19 Finally, we distinguish depth changes on

the same side of the order book as the trade as hit (e.g. the limit sell side for an

aggressive buy trade) from those on the opposite side from which the trade has hit

(e.g. the limit buy side for an aggressive buy).

Tables 8 and 9 give the results of these measured depth changes (with cross-sectional

standard errors in brackets). Let us focus first on Table 8, which presents changes

in same side depth. Pre-trade, for both fast and slow trades, depth changes are

economically very small (less than one hundredth of 1% of ADV). For slow trades,

the same is true post-trade. However, for FAT, post-trade we see consistent and

sizeable increases in depth, especially for the least active stocks in quintiles 1 and 2.

This would seem to be very rapid replacement of the depth consumed by the FAT

itself.

Table 9 gives similar results for the opposite side of the market (i.e. the side of

the order book that the trade did not directly affect). For fast trades, there is clear

evidence of depth increases pre-trade and similarly sized depth reductions post-trade.

These effects appear across all stock quintiles and in both best depth and depth across

the first 5 levels. The depth changes around slow trades are much smaller than for

19When defining the 5 events before a trade, we exclude the event immediately prior to the current
trade as this is likely to be the limit order entry that triggers a fast trade.
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FAT, although they tend to be in the same direction.

Putting these results together, do they paint a picture of FAT as manipulative activ-

ity? If anything, the results indicate quite the opposite.

If we believe the spoofing story, we would expect a fast buy, for example, to be

preceded by an increase in the limit sell side depth, initiated by the spoofer and

designed to induce the entry of a new generously-priced limit sell order which the

fast buyer then lifts. Subsequent to the trade, the aggressive buyer engaged in the

spoofing strategy would cancel the limit sell orders that she had added, leading to

a reduction in limit sell side depth post-trade. Our results, however, provide no

evidence that fast trades tend to be preceded by run-ups in same side depth which is

then removed post-trade. In fact, post-trade we see same side depth rise.20 Evidence

for spoofing is thus weak.

The pre- and post-trade changes in depth for the opposite side of the limit order

book are stronger and more significant. The result that both fast and slow trades

tend to be preceded by increases in depth on the opposite side of the market might

be interpreted as a crowding-out effect as in Foucault (1999). That is, when the buy

side of the order book becomes very deep, for example, a trader is more willing to

submit a market buy, pay the spread and jump the queue. There is an asymmetry,

however, in that fast traders seem to react more strongly to crowding out, especially

for less liquid stocks. The result that opposite side depth decreases quite strongly

after fast trades is not obviously consistent with the crowding out story, as it is not

clear why a trader jumping a limit buy queue would cause others to relinquish their

position in that queue of limit buys. An alternative interpretation of these results is

that it is the fast traders who are being spoofed. They are aggressively buying when

the limit buy side of the order book becomes heavy but after their trade the weight

on the limit buy side of the book that induced them to trade disappears. Perhaps

this is due to strategic liquidity suppliers exploiting badly designed fast algorithms.

20We have investigated the depth changes over different event windows pre-trade with no quali-
tative change in the results.
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3.4 Why are immediate trades so different to the merely

ultra-fast?

The analysis of both transactions costs and price impacts suggest that immediate

trades appear quite different from other fast trades and, if anything, look more like

slow trades. In this section we refine our analysis and compare the properties of im-

mediate trades with those of trades that are nearly but not quite immediate. Specifi-

cally, we now split trades in our previous ultra-fast (1-10ms) category into two groups:

‘near-immediate’ trades that execute 1-2ms after the posting of the limit order, and

other ultra-fast trades that execute in the 2-10ms interval.

Estimating a version of equation 1 with the addition of a near-immediate category

reveals that there remains a large difference between immediate trades and even near-

immediate ones. Further, near-immediate trades are indistinguishable from other

ultra-fast trades. For example, when we pool all stocks into one panel regression, the

coefficient on immediate trades is 2.996, the coefficient on near-immediate trades is

1.586 and that on other ultra-fast trades is 1.622. Even when we split stocks into

ADV terciles this same pattern is revealed.

Results from estimating the price impact equation 2 are only marginally more nu-

anced. Pooling all stocks into one panel and using midquote returns, the price impact

of an immediate trade is 2.872, the price impact of a near-immediate trade is 0.183

and that of other ultra fast trades is 0.029. While near-immediate trades have a

much larger positive price impact than other ultra fast trades, economically speaking

the magnitude is still tiny at less than one-fifth of a basis point.21 Again, the same

results hold when we examine stocks split by terciles.

Refining the analysis reveals that immediate trades are different from all other type

of fast trades, even ones that are only very slightly slower. Transactions costs mono-

tonically fall with execution speed until execution becomes immediate. At this point,

21The point estimate for near-immediate trades is also only marginally significant with a t-statistic
of just 1.665 though this is due to the relatively few observations falling into this category.
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execution costs jump dramatically, rising to the levels seen for trades whose speed is

measured in seconds. The information content of fast trades is at best economically

tiny and may be statistically significantly negative, though still of small magnitude.

This is also true even for near-immediate trades. But the information content of an

immediate trade is positive, economically large (averaging around 3bp) and of similar

magnitude to slow trades.

4 Conclusions and policy implications

Much of the debate regarding high frequency and algorithmic trading centres on

speed. We divide trades in London Stock Exchange equities into two subsets defined

by speed. We show that fast trades execute more cheaply than do slow trades, in

the sense that effective spreads are significantly smaller. However, fast trades contain

almost no information, unlike slow trades. Slow trades are associated with positive

price impact, fast trades with zero price impact. Finally, we find very little evidence

that fast traders manipulate markets in their favour. If anything, there is more

clear evidence that in less liquid stocks some fast traders are themselves be being

manipulated.

At least some of the regulatory discussion regarding computer-based trading has

suggested the imposition of limits to speed (e.g. minimum resting times) or regulation

entities based on the speed of their technology. Our analysis suggests that fast traders

are not necessarily the villains that this intuition relies upon as they are, on average,

rather innocuous. In our data, speed brings cheap execution but speedier traders are

neither fundamentally informed nor malicious. One way to interpret these results

is to regard fast trading as being generated, in the main, by activity from sell-side

execution algorithms. As such, regulating based on speed (i.e. technology) is, we

feel, a poor substitute for regulating trading strategies. In our view, the focus should

be squarely on the latter.
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Brogaard, J., B. Hagströmer, L. L. Norden, and R. Riordan, 2013, “Trading fast and
slow: Colocation and market quality,” Manuscript, 7, 24.

Brogaard, J., T. J. Hendershott, and R. Riordan, 2012, “High-Frequency Trading and
Price Discovery,” Review of Financial Studies, forthcoming.

Budish, E., P. Cramton, and J. Shim, 2013, “The high-frequency trading arms race:
Frequent batch auctions as a market design response,” Manuscript, 6.

Chaboud, A., B. Chiquoine, E. Hjalmarsson, and C. Vega, 2013, “Rise of the ma-
chines: Algorithmic trading in the foreign exchange market,” Journal of Finance,
Forthcoming.

Foucault, T., 1999, “Order flow Composition and Trading Costs in a Dynamic Limit
Order Market,” Journal of Financial Markets, 2, 99–134.

Foucault, T., J. Hombert, and I. Rosu, 2013, “News Trading and Speed,” Les Cahiers
de Recherche 975, HEC Paris.

Hasbrouck, J., and G. Saar, 2011, “Low-Latency Trading,” SSRN eLibrary.

Hendershott, T., C. M. Jones, and A. J. Menkveld, 2011, “Does Algorithmic Trading
Improve Liquidity?,” Journal of Finance, 66, 1–33.

Hendershott, T. J., and R. Riordan, 2012, “Algorithmic Trading and the Market for
Liquidity,” Journal of Financial and Quantitative Analysis.

Jiang, G. J., I. Lo, and G. Valente, 2013, “High Frequency Trading in the US Treasury
Market: Evidence around macroeconomic news announcements,” .

Kirilenko, A. A., A. P. S. Kyle, M. Samadi, and T. Tuzun, 2011, “The Flash Crash:
The Impact of High Frequency Trading on an Electronic Market,” SSRN eLibrary.

Martinez, V., and I. Rosu, 2013, “High Frequency Traders, News and Volatility,”
SSRN eLibrary.

25



Pagnotta, E., and T. Philippon, 2011,“Competing on speed,”working paper, National
Bureau of Economic Research.

Ranaldo, A., 2004, “Order aggressiveness in limit order book markets,” Journal of
Financial Markets, 7(1), 53 – 74.

26



T
ab

le
1:

S
u
m

m
ar

y
st

at
is

ti
cs

fo
r

m
ar

ke
t

d
at

a:
st

o
ck

s
gr

ou
p

ed
in

to
A

D
V

te
rc

il
es

S
p
re

ad
T

ra
d
e

S
iz

e
V

ol
u
m

e
F
A
T
<
1

F
A
T
1
−
1
0

F
A
T
1
0
−
2
5

F
A
T
2
5
−
1
0
0

F
A
T
1
0
0
−
1
s

F
A
T
1
s−

1
0
s

S
lo

w

A
ll

7.
59

2
9.

64
2

24
.9

46
0.

09
1

0.
09

0
0.

07
8

0.
05

4
0.

08
0

0.
15

2
0.

45
5

T
1

8.
83

3
6.

39
9

8.
05

9
0.

08
4

0.
08

5
0.

07
3

0.
04

6
0.

06
6

0.
13

1
0.

51
4

T
2

8.
39

3
10

.1
49

16
.2

77
0.

09
4

0.
09

3
0.

08
0

0.
05

3
0.

07
3

0.
13

7
0.

47
0

T
3

5.
55

1
12

.3
77

50
.5

02
0.

09
6

0.
09

3
0.

08
1

0.
06

1
0.

10
1

0.
18

7
0.

38
0

N
o
te
s:

ea
ch

ro
w

gi
v
es

eq
u
al

ly
w

ei
gh

te
d

m
ea

n
va

lu
es

o
f

d
a
ta

fo
r

th
e

fu
ll

sa
m

p
le

o
f

a
ll

st
o
ck

s
o
r

fo
r

a
p
a
rt

ic
u

la
r

te
rc

il
e

o
f

st
o
ck

s,
g
ro

u
p

ed
b
y

A
D

V

(i
.e

.
fo

r
ea

ch
A

D
V

gr
ou

p
w

e
ta

ke
th

e
st

o
ck

-l
ev

el
av

er
a
g
es

o
f

o
u
r

va
ri

a
b
le

a
n

d
th

en
cr

ea
te

a
n

eq
u
a
ll
y

w
ei

g
h
te

d
cr

o
ss

-s
ec

ti
o
n
a
l

av
er

a
g
e.

N
o
te

th
a
t

a
ll

st
o
ck

le
ve

l
av

er
ag

es
ar

e
tr

im
m

ed
m

ea
n
s,

w
h

er
e

th
e

to
p

a
n
d

b
o
tt

o
m

p
er

ce
n
ti

le
s

o
f

th
e

d
is

tr
ib

u
ti

o
n

h
av

e
b

ee
n

d
is

ca
rd

ed
fo

r
ro

b
u
st

n
es

s.
)

T
1

is
th

e

lo
w

es
t

A
D

V
p

or
tf

ol
io

an
d

T
3

th
e

h
ig

h
es

t
A

D
V

p
or

tf
ol

io
.

T
h
e

fi
rs

t
th

re
e

co
lu

m
n
s

o
f

d
a
ta

g
iv

e
m

ea
n

b
id

-a
sk

sp
re

a
d

s
in

b
a
si

s
p

o
in

ts
,

m
ea

n
tr

a
d
e

si
ze

in
th

ou
sa

n
d
s

of
G

B
P

,
an

d
m

ea
n

v
ol

u
m

e
tr

ad
ed

p
er

d
ay

in
m

il
li
o
n

s
o
f

G
B

P
.

T
h

e
co

lu
m

n
s

h
ea

d
ed

F
A
T
<
1

to
F
A
T
1
s
−
1
0
s

g
iv

e
th

e
p

er
ce

n
ta

g
es

o
f

F
a
st

A
gg

re
ss

iv
e

T
ra

d
es

in
ea

ch
of

th
e

va
ri

ou
s

b
u

ck
et

s
as

d
es

cr
ib

ed
in

th
e

te
x
t.

T
h

e
fi

n
a
l

co
lu

m
n

g
iv

es
th

e
p

er
ce

n
ta

g
e

o
f

sl
ow

a
g
g
re

ss
iv

e
tr

a
d
es

.

27



Table 2: Mean trade size by speed category

FAT<1 FAT1−10 FAT10−25 FAT25−100 FAT100−1s FAT1s−10s Slow

All 11.113 8.421 7.696 7.106 7.361 8.620 10.979
T1 7.438 5.701 5.257 4.792 4.889 5.545 7.076
T2 11.699 8.826 8.060 7.403 7.713 8.960 11.776
T3 14.203 10.736 9.769 9.124 9.480 11.355 14.085

Notes: Each row gives equally weighted mean trade size measured in thousands of GBP by speed

category for the full sample of all stocks or for a particular tercile of stocks, grouped by ADV (i.e.

for each ADV group we take the stock-level averages of our variable and then create an equally

weighted cross-sectional average. Note that all stock level averages are trimmed means, where the

top and bottom percentiles of the distribution have been discarded for robustness.) T1 is the lowest

ADV portfolio and T3 the highest ADV portfolio. Trades with the same time stamp and direction

are aggregated into one transaction.
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Table 8: Fast and Slow Trades: pre and post-trade changes in depth: same-side: 5
event horizon

Pre-trade Post-trade
Fast Slow Fast Slow

Best Top5 Best Top5 Best Top5 Best Top5

Q1 -0.047 0.077 -0.065 0.013 0.182 0.193 0.001 -0.076
[0.023] [0.032] [0.011] [0.012] [0.049] [0.062] [0.013] [0.027]

Q2 -0.014 0.026 -0.040 -0.035 0.078 0.078 -0.012 -0.084
[0.011] [0.015] [0.011] [0.013] [0.029] [0.042] [0.016] [0.018]

Q3 -0.019 0.004 -0.024 -0.027 0.008 0.001 -0.003 -0.054
[0.004] [0.007] [0.003] [0.004] [0.004] [0.015] [0.002] [0.009]

Q4 -0.023 -0.021 -0.030 -0.047 0.015 0.019 -0.001 -0.018
[0.005] [0.008] [0.005] [0.008] [0.007] [0.011] [0.003] [0.006]

Q5 -0.016 -0.017 -0.015 -0.017 0.002 0.001 -0.001 -0.003
[0.004] [0.004] [0.003] [0.003] [0.001] [0.002] [0.001] [0.001]

Notes: results for 5 ADV-based quintiles of the universe of 289 stocks. For each quintile the table

presents the average change in depth (first within stock and then across stocks) prior to trades and

then presents average depth changes after trades. Depth changes here are for the ’same side’ that

the trade hits i.e. on the limit sell (buy) side for aggressive buy (sell) trades. Depth changes are

computed over 5 order events prior to the trade (from t − 7 to t − 2) or 5 order events afterwards

(from t + 1 to t + 6) at the best and also summed across the first five levels of the order book,

respectively. Depth is measured in percentage points of average daily volume traded. Means are

presented and below these in brackets are cross sectional standard errors (equal to the standard

deviation of the cross-stock averages divided by the square root of the number of stocks in each

subgroup).

34



Table 9: Fast and Slow Trades: pre and post-trade changes in depth: opposite-side:
5 event horizon

Pre-trade Post-trade
Fast Slow Fast Slow

Best Top5 Best Top5 Best Top5 Best Top5

Q1 0.148 0.277 0.072 0.128 -0.115 -0.283 -0.042 -0.042
[0.037] [0.053] [0.008] [0.013] [0.049] [0.062] [0.013] [0.027]

Q2 0.068 0.219 0.048 0.094 -0.054 -0.204 -0.034 -0.042
[0.012] [0.025] [0.004] [0.009] [0.029] [0.042] [0.016] [0.018]

Q3 0.029 0.145 0.027 0.056 -0.026 -0.101 -0.021 -0.031
[0.006] [0.018] [0.002] [0.006] [0.004] [0.015] [0.002] [0.009]

Q4 0.010 0.077 0.022 0.030 -0.024 -0.064 -0.016 -0.017
[0.011] [0.016] [0.003] [0.005] [0.007] [0.011] [0.003] [0.006]

Q5 0.011 0.017 0.009 0.009 -0.011 -0.015 -0.006 -0.005
[0.003] [0.003] [0.002] [0.002] [0.001] [0.002] [0.001] [0.001]

Notes: results for 5 ADV-based quintiles of the universe of 289 stocks. For each quintile the table

presents the average change in depth (first within stock and then across stocks) prior to trades and

then presents average depth changes after trades. Depth changes here are for the ’opposite side’ to

that which the trade hits i.e. on the limit sell (buy) side for aggressive sell (buy) trades. Depth

changes are computed over 5 order events prior to the trade (from t− 7 to t− 2) or 5 order events

afterwards (from t + 1 to t + 6) at the best and also summed across the first five levels of the order

book, respectively. Depth is measured in percentage points of average daily volume traded. Means

are presented and below these in brackets are cross sectional standard errors (equal to the standard

deviation of the cross-stock averages divided by the square root of the number of stocks in each

subgroup).
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Figure 2: Intra-day patterns in trading and liquidity measures
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Figure 4: Spoofing event counts by firms, ordered by increasing ADV
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