

# RTSI volaility: impact of oil price volatility and sanctions

Artem Aganin

National Research University Higher School of Economics Moscow, Russia

April 10, 2019



RTSI is a main index of Russian stock market and therefore an important indicator of Russian economy. A number of papers have found influence of oil price volatility on volatility of stock market indicators in oil-exporting countries, including Russia. But very little was said about such effect since 2014 and Ukranian crysis.

- How much RTSI volatility is defined by the oil price volatility?
- Do sanctions impact RTSI volatility?
- · To what extent?





- Dependence of MICEX index on oil prices was found in (Bein,Aga 2016)
- In (Degiannakis, et. al 2018) authors tried to summarize conclusions of many papers, dedicated to oil price and oil price volatility effect on stock market indicies.
- Kholodilin, Netšunajev (2019) analyzed impact of sanctions on Russian GDP. They discover little evidence of GDP decrease due to sanctions.
- Factors, influencing Russian stock market during 2008-2017 were analyzed in (Rubtsov, Annenskaya, 2018). Authors came to conclusion that during 2014-2017 sanctions were the main driver of Russian stock market.

# Exchange rate & Brent

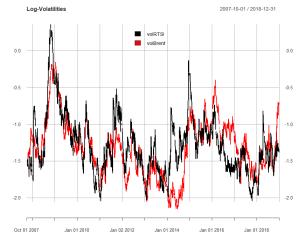




Daily quotes of RTSI (left axis) and Brent oil prices (right axe) on interval 10.10.2007-31.12.2018



- 1. Data frequency:
  - intraday
  - daily
  - weekly;
- 2. Model dimensionality:
  - · One-dimensional models GARCH family
  - Multidimensional models BEKK(1,1), DCC(1,1), GHAR(1,1);
- 3. In-sample data size;
- 4. Macroeconomic factors selection.




(Zakoian, 1994) and (Glosten, Jaganathan, Runkle, 1993)

$$\begin{aligned} \mathbf{r}_{t} &= \mu + \rho \mathbf{r}_{t-1} + \varepsilon_{t}, \\ \sigma_{t} &= \omega + \alpha \varepsilon_{t-1}^{+} - \gamma \varepsilon_{t-1}^{-} + \beta \sigma_{t-1}, \\ \varepsilon_{t} &= \sigma_{t} \mathbf{u}_{t}, \mathbf{u}_{t} \sim i.i.d. \ \mathcal{N}(0, 1), \\ \varepsilon_{t}^{+} &= \max(\varepsilon_{t}, 0), \varepsilon_{t}^{-} = \min(\varepsilon_{t}, 0); \\ \alpha > 0, \gamma > 0, \beta > 0, \omega > 0. \end{aligned}$$

# Volatility estimates





Here volRTSI and volBrent are logarithms of RTSI and Brent volatility, calculated by one-dimensional TGARCH model

A. Aganin

Higher School of Economics

April 10, 2019 7 / 17



#### (Engle, Kroner, 1995)

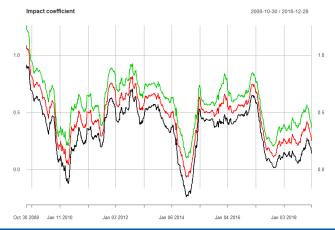
$$\begin{bmatrix} \mathbf{r}_{brent,t} \\ \mathbf{r}_{RTSI,t} \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} + \begin{bmatrix} \beta_{11} & 0 \\ \beta_{21} & \beta_{22} \end{bmatrix} * \begin{bmatrix} \mathbf{r}_{brent,t-1} \\ \mathbf{r}_{RTSI,t-1} \end{bmatrix} + \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix},$$
$$\begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix} = H_t^{1/2} \begin{bmatrix} \eta_{1,t} \\ \eta_{2,t} \end{bmatrix}, \eta_t = \begin{bmatrix} \eta_{1,t} \\ \nu_{2,t} \end{bmatrix} \sim i.i.d. \ \mathcal{N} \left( \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$- \text{ Conditional covariance of } \begin{bmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{bmatrix}$$
$$H_t = CC^T + A^T \varepsilon_{t-1} \varepsilon_{t-1}^T A + B^T H_{t-1} B$$

Ht



Instead of using volatility models we can estimate realized volatility - observed proxy for unobserved volatility:

$$\mathsf{R}\mathsf{V}_t = \sum_{i=1}^N \mathsf{r}_{i,t}^2$$


 $r_{i,t}$  - return in day t at the interval  $[t_i, t_i + \Delta_t], i \in [1, N]$ . Here  $\Delta_t = 5$  minutes.

1

## Impact coefficient Dynamics of impact coefficient $\beta$



$$\ln(\sigma_{\textit{RTSI},t}^2) = \mathbf{c} + \beta \ln(\sigma_{\textit{brent}_t}^2) + \varepsilon_t.$$



A. Aganin

Higher School of Economics

ß

- 1. Periods of high/low oil prices:
  - Highoil, if higher than 110\$
  - Lowoil, if lower than 45\$
- VIX American stock market's expectation of volatility implied by S&P 500 index options
- 3. Volatility of emerging markets
- 4. Sanctions dummy or categorical variable



| N⁰ | Dates                                                  | Description                                                                       |  |  |  |  |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|    | 17.03.2014                                             | The EU, NATO and a number of countries have announced the suspension              |  |  |  |  |
| 1  |                                                        | of cooperation with Russia on individual projects and the imposition of sanctions |  |  |  |  |
|    |                                                        | against a number of Russian politicians                                           |  |  |  |  |
| 2  | 12.09.2014                                             | The EU announced introduction of new sanctions against Russia,                    |  |  |  |  |
| 2  |                                                        | in particular against Sberbank and oil companies.                                 |  |  |  |  |
| 3  | 16.02.2015                                             | The EU announced introduction of new sanctions. At this point, the sanctions list |  |  |  |  |
| 1  |                                                        | began to contain 151 individuals and 37 legal entities.                           |  |  |  |  |
| 4  | 22.12.2015                                             | Expansion of US sanctions against Russia - sanctions imposed                      |  |  |  |  |
| 14 |                                                        | on 34 individuals and legal entities.                                             |  |  |  |  |
| 5  | 29.12.2016                                             | The US President signed an order to expel 35 Russian diplomats and expand         |  |  |  |  |
| 1  |                                                        | sanctions against Russia due to interference in the US presidential election      |  |  |  |  |
| 6  | 06.04.2018                                             | International sanctions against Russia in response to the poisoning of Skripal    |  |  |  |  |
| 0  |                                                        | and his daughter on March 4 in the UK, which has been blamed on Russia.           |  |  |  |  |
|    | Other important date                                   |                                                                                   |  |  |  |  |
|    | 22.08.2014 Start of significant decrease in oil prices |                                                                                   |  |  |  |  |

ß

- Volailities were calculated by TGARCH(1,1) model
- Volatilities from TGARCH estimation on whole 11 year interval were used
- Volatilities are in fact nonstationary, so that introduces a problem for estimation
- But in fact RTSI and oil volailities were found to be cointegrated, so we can use special methods

Dynamic ols regressions of next form were used:

$$\ln(\sigma_{\textit{RTSI},t}^2) = \ln(\sigma_{\textit{brent},t}^2) + \textit{d}_t + \textit{d}_t \cdot \ln(\sigma_{\textit{brent},t}^2) + \epsilon_t$$

Results (1)



|                         | Dependent variable: In(volRTSI) |             |           |
|-------------------------|---------------------------------|-------------|-----------|
|                         | 1                               | 2           | 3         |
| In(volB)                | 0.419***                        | 0.451***    | 0.524***  |
| ln(VIX(-1))             | 0.467***                        | 0.559***    | 0.538***  |
| lowoil                  | 0.200                           |             | 0.008     |
| highoil                 | -0.937*                         |             | -0.729    |
|                         |                                 |             |           |
| In(volB)×Iowoil         | 0.061                           |             | 0.010     |
| In(volB)×highoil        | -0.198*                         |             | -0.173*   |
|                         |                                 |             |           |
| sanctions=1             |                                 | -1.038**    | -1.116*** |
| In(volB)×(sanctions=1)  |                                 | -0.287**    | -0.307*** |
|                         |                                 |             |           |
| Constant                | -0.228                          | 0.237       | 0.441     |
| Observations            | 2.560                           | 2.560       | 2.560     |
| Adjusted R <sup>2</sup> | 0.608                           | 0.648       | 0.650     |
| Note:                   | *p<0.1                          | ; **p<0.05; | ***p<0.01 |

# Results (2)



|                         | 4               | 5         |
|-------------------------|-----------------|-----------|
| In(volB)                | 0.548***        | 0.574***  |
| In(VIX(-1))             | 0.444***        | 0.441***  |
| sanc=1                  | 0.571***        | 1.817     |
| sanc=2                  | 0.458***        | 1.348**   |
| sanc=3                  | 0.115***        | -1.545**  |
| sanc=4                  | -0.136***       | -0.194    |
| sanc=5                  | -0.032          | 0.173     |
| sanc=6                  | 0.037           | -2.993*** |
| In(volB)×(sanc=1)       |                 | 0.259     |
| In(volB)×(sanc=2)       |                 | 0.220*    |
| In(volB)×(sanc=3)       |                 | -0.432**  |
| In(volB)×(sanc=4)       |                 | -0.012    |
| In(volB)×(sanc=5)       |                 | 0.048     |
| In(volB)×(sanc=6)       |                 | -0.740*** |
| Constant                | 0.138           | 0.253     |
| $R^2$                   | 0.735           | 0.753     |
| Adjusted R <sup>2</sup> | 0.734           | 0.751     |
| Note:                   | 0.05; ***p<0.01 |           |
|                         |                 |           |



- RTSI volatility depends on oil price volatility.
- GARCH, BEKK and RV volatility estimates showed similar behavior and all confirm found connection.
- This dependence varies in time
- Sanctions increased RTSI volaility for a short period of time.
- Impact of sanctions deteriorates with time.
- Russian stock market quickly adapts to the sanctions

## Literature



- 1. Bein M., Aga M. (2016). On the linkage between the international crude Oil Price and stock markets: Evidence from the Nordic and Other European Oil Importing and Oil exporting countries. Journal for economic forecasting, 1(4), 115-134.
- Degiannakis S., Filis G., Arora V. (2018). Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence. The Energy Journal, 39(5).
- Engle R. F., Kroner K. F. (1995). Multivariate simultaneous gener alized ARCH, Econometric Theory, 11, 122–150.
- Rubtsov B., Annenskaya N. (2018). Factor Analysis of the Russian Stock Market. Journal of Reviews on Global Economics, 7, 417-425.
- Zakoian J-M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18, 931–955.