• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Numerical method for 3D two-component isothermal compressible flows with application to digital rock physics
В печати

Balashov V., Savenkov E., Zlotnik A.

Russian Journal on Numerical Analysis and Mathematical Modelling. 2019. Vol. 34.

Глава в книге
The Kantorovich Problem and Wasserstein Metric in the Theory of Belief Functions

Bronevich A. G., Rozenberg I. N.

In bk.: Belief Functions: Theory and Applications 5th International Conference, BELIEF 2018, Compiègne, France, September 17-21, 2018, Proceedings. Vol. 11069. Springer, 2018. P. 31-38.

Заседание Общемосковского семинара «Математические методы анализа решений в экономике, бизнесе и политике»

Мероприятие завершено

22 ноября (среда) 2017 г. состоится внеочередное заседание общемосковского научного семинара «Математические методы анализа решений в экономике, бизнесе и политике».

Руководители семинара: д.т.н., проф. Алескеров Фуад Тагиевич, д.т.н., проф. Подиновский Владислав Владимирович, д.т.н., проф. Миркин Борис Григорьевич.


(1) Докладчик: Мишель Грабиш (University Paris I, Centre d’Economie de la Sorbonne)

Тема: Some remarkable polyhedra in cooperative game theory

The characteristic function of a TU-game is a set function defined on a finite universe vanishing at the empty set. Set functions appear in many domains of Operations Research and decision theory (capacities, pseudo-Boolean functions, polymatroids, etc.) and induce interesting polyhedra. Remarkable families of set functions form polyhedra, e.g., the polytope of capacities (monotone TU-games), the polytope of $p$-additive capacities, the cone of supermodular games, etc. Also, the core of a set function, defined as the set of additive set functions dominating that set function, is a polyhedron which is of fundamental importance in game theory, decision making and combinatorial optimization. This survey gives an overview of these notions and studies all these polyhedra. We put an emphasis on the (still unsolved) problem of finding the vertices of the core.

(2) Докладчик: Агнешка Рузиновска-Грабиш (University Paris I, Centre d’Economie de la Sorbonne)

Тема: Modeling anonymous influence with anti-conformist agents

We study a stochastic model of anonymous influence with conformist and anti-conformist individuals. Each agent with a "yes" or "no" initial opinion on a certain issue can change his opinion due to social influence. We consider anonymous influence, which depends on the number of agents having a certain opinion, but not on their identity. An individual is conformist/anti-conformist if his probability of saying "yes" increases/decreases with the number of "yes"- agents. In order to consider a society in which both conformists and anti-conformists co-exist, we investigate a generalized aggregation mechanism based on ordered weighted averages. Additionally, every agent has a coeffi- cient of conformism which is a real number in [−1, 1], with negative/positive values corresponding to anti-conformists/conformists. The two extreme values −1 and 1 represent a pure anti-conformist and a pure conformist, respectively, and the remaining values – so called "mixed" agents. We consider two kinds of a society: without mixed agents, and with mixed agents who play randomly either as conformists or anti-conformists. For both cases of the model, we deliver a qualitative analysis of convergence, i.e., find all absorbing classes and conditions for their occurrence.

Язык: английский.

Заседание состоится в 16:30 по адресу: г. Москва, улица Шаболовка, дом 26,  корпус 2, аудитория  2309.

На семинар приглашаются все желающие. В связи с пропускным режимом в НИУ ВШЭ, коллеги, не имеющие пропусков, проходят в здание НИУ ВШЭ по разовому пропуску. Для получения пропуска необходимо заранее, до 12:00 среды 22 ноября, проинформировать нас о желании посетить заседание семинара - прислать по электронной почте Вашу фамилию, имя, отчество (полностью) и название организации, которую Вы представляете. Наш электронный адрес math.methods.hse@gmail.com.