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Plan

Social networks and relevant properties
Network formation
Diffusion on networks

irina.kirysheva@nu.edu.kz (NU) Diffusion on Networks HSE 2 / 22



Social Networks

Network - nodes and edges between them
They can be random or strategically formed
Can be directed or undirected
In context of disease spread either describe the interaction or contagion
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Social Networks

N nodes
Graph (N, g)

g =

0 1 0
1 0 1
0 1 0


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Florentine Families

Padgett, Ansell 1993
When Medici came to power
Construct a network of families
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Florentine Families
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Florentine Families

Medici have the similar degree to other families
Count the shortest path between two families Pij

How many path goes through the family k

Take the average - "centrality"
Medici - 0.45, Guadagni - 0.22
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Random Networks

Erdos, Renyi
N nodes, each link forms with p

Binomial model of link formation
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Random Networks

Degree of node - the number of links in a node
Average degree in the network
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Random Networks

Degree distribution
Cd
n−1p

d(1− p)n−1−d

When n becomes large the degree distribution is approximated by
Poisson distribution
e−(n−1)p((n−1)p)d

d!
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Random Networks

n = 50, p = 0.02, from Jackson
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Random Networks

n = 50, p = 0.08, from Jackson
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Social Networks

Network can be fully connected or consist of separate components
Giant component - nontrivial fraction of nodes
If network has one component - it’s connected
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Social Networks

Bearman, Moody, Stovel
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Network formation

Basic reproduction number - R0.
When greater than one - there is a giant component
Further increase - becomes connected
Both disease properties and underlying network topology matter
Vaccination - bring reproduction number below 1.

irina.kirysheva@nu.edu.kz (NU) Diffusion on Networks HSE 15 / 22



Social Networks

from Jackson
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Real-world networks

Well-connected
Sparse
Small world - small diameter and average path
High clustering
Fat tails of degree distribution
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Contagion

SIR/SI and SIS.
SIR - how many nodes are infected in the process
SIS - the prevalence of the infection in long-run
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SI/SIR models

In every t S(t) may become infected at some rate for each neighbour.
If I(0) is a singleton - have a positive probability to reach unbounded
number of nodes if z2 > z1
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Contagion

Centrality of a node - not vital for diffusion but can accelerate
Immunization should be targeted towards high-degree nodes
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Contagion

Friendship paradox - most people have fewer friends than their friends
have, on average.

Acquaintance immunization
In SIS can get decrease the positive prevalence in LR if cure is biased
towards high-degree nodes
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Conclusions

Social networks - powerful tool to model interactions
Predicts global spread of diseases
Vaccinations can eradicate the spread but should be centralized
Can identify central nodes through the neighbours
Effective policies should include network topology (and target central
nodes)
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