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Mathematical modelling and machine learning

e Using data for building a prediction /forecast model for future
unseen cases

@ Learning - parameter tuning for smooth and accurate decision
making in the future

@ Machine learning problems: Classification, regression, image
reconstruction, anomaly detection, recommendation systems,
time series change point detection

o fMRI/EEG signal cleaning
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Tasks in medicine and mathematical techniques

@ Healthy/ill patient, cancer type identification — decision trees,
neural networks, support vector machines

@ Optimal allocation of patients into treatments in a clinical
trial — multi-armed bandits and other approaches

@ Modelling drug diffusion through tissue, e.g. anti-nicotine
drug patches on skin — diffusion models such as continuous
time random walks and stochastic differential equations

@ Modelling the optimal molecular drug structure — genetic
algorithms, neural networks
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Patient treatment choice as an optimization problem

Multi-armed bandit approach to treatment allocation has
theoretically grounded strategies approximating the optimal one

Kakoe nekapcTtBo AaTb criefylolemy naumeHTty?

Banaut 1 BaHauT 2 Bangut 3
(rpynna - (rpynna - (rpynna -
nekapctso 1) nekapcTeo 2) nekapcTeo 3)
yenex Ycnex Ycnex
50% 20% 70%

4/25



SVM - patient classification

Support Vector Machines allow to find the equation of the
optimally separating hyperplane for data points of different classes.
The kernel trick mapping the data into another space.

Dataset: N=800, '0': 0.71375 ‘1': 0.28625
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Image from: https://www.eric-kim.net/
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SVM - patient classification

Computer-aided lung disease classification

Infiltration Atelectasis Cardiomegaly Effusion

Pneumonia

Image from: https://biomedical-engineering-
online.biomedcentral.com/articles/10.1186/s12938-018-0544-y
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Data augmentation, synthetic sample generation

Generative Neural Networks may be employed for realistic synthetic
image data generation in case there is a shortage of real data for
drawing inference.
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Image from: https://arxiv.org/pdf/1803.01229.pdf
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Molecular design for drugs

Mathematical tools include Genetic Algorithms and Generative
Adversarial Networks

Image from:

https://jcheminf.biomedcentral.com/articles/10.1186,/s13321-019-
0397-9
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fMRI and EEG noise removal

In medical data noise could be due to electromagnetic interference,
uncontrolled physiological processes affecting the signal, such as
breathing, sudden muscle movements due to pain etc.

Magnitude of Original, De-noised and Difference Data

Amplitud (uA)
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Modelling, simulation and analysis of data

Gene expression oscillation mechanism may be modelled with a
system of ODEs and mathematical tools allow to analyze
characteristics of observed data for further inference
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Image from:
https://reader.elsevier.com /reader/sd/pii/S09628924203007387token=7-
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Simulation and analysis of data - pcLNA

Generation of synthetic data for an oscillatory dynamics requires
reliable techniques, which focus on realistic data distributions.

(n-1)-dimensional  intersections, Q:",of
deterministic transversal stochastic trajectory
trajectory P with transversal

corresponding

n-dimensional space

Here the red loop is the solution of an ODE system such as the
one on the previous slide for gene expression oscillations.
Mathematical modelling allows simulations for testing research

ideas if real data is scarse.
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ZeitZeiger - time prediction based on gene expression

ZeitZeiger is a machine learning tool developed to predict the
timing gene expression data was obtained for accurate
decision-making. This could be relevant for understanding the
inner clock rhythm disruption for tailored medicine
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Common EEG setup: 32 electrode channels, may be way more: all
attached to the scalp of the head at specific points.

EEG allows to monitor electrical activity within the brain and
measures the changes in electric potentials with a common
reference to a quiet electrode

EEG uses include: locating brain damage, determining sleep stage,
monitoring anesthesia depth
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Frequency band separation with wavelets Db4

Splitting the signal into 7 frequency bands: Daubechies4 wavelets

Table: Frequency band correspondence

Traditional Db4 band’s central frequency
Delta 0 — 3.5 Hz 2.7 Hz
Theta 3.5 — 7.5 Hz 5.57 Hz
Alpha 7.5 — 13 Hz 11 Hz
Beta 13 — 30 Hz 22.3 Hz
Gamma > 30 Hz four subsequent bands
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EEG and frequency bands

Delta - Deep sleep, no dreams
Theta - Daydreaming

Alpha - Rest after mental activity
Beta -Engaged mind

e 6 66 o6 o

Gamma - Intense brainstorming, brain disorders
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Stochastic process approach to electroencephalogram

(EEG) data

Our question: can we use stochastic processes to model EEG
signals recorded during coma for different channels and use these
to predict the neurodevelopmental level of patients 6 months after
emergence from coma due to cerebral malaria?
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Stochastic processes

@ All frequency bands - increment process histograms:
t-distribution, stationarity

Figure: Alpha frequency band
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Stochastic processes

@ Student Ornstein-Uhlenbeck process: suitable model, SDE
dX(t) = —AX(t)dt + dY(At),t >0, (1)

where {Y(t),t > 0} is the background driving Levy process

@ and the parameters of the t-distribution were used as features
for the prediction problem
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Other features and basic result

@ Other EEG features: proportion of flat line in signal,
frequencies of peaks higher than nearest neighbours by a
certain proportion of signal’s standard deviation, entropy and
other standard time series characteristics

@ Other non-EEG features: height, weight, age, numerous blood
and cerebrospinal fluid characteristics

@ The t-distribution parameters were better predictors as a
group than medical /non-EEG based features, specific
channels/brain regions identified as useful for further
biomarker analysis
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Methods used

@ Data-preprocessing with Persyst: Neural networks for noise
removal

@ SVD-based matrix completion method for missing data: Soft
Impute (Hastie, Tibshirani): an iterative matrix approximation
technique

@ Regularized regression: Lasso and Elastic Net regression used
for the prediction problem, number of features >> number of
observations

@ Leave-one-out cross validation used for choosing optimal
tuning parameters
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Methods - some details - regression and regularization

Let us denote by X the n by p normalized feature matrix, n=78, p
- number of features considered, and y - the neurodev. level in 6
months. We solve the following optimization problem:
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and the tuning parameters /; and « are found by cross-validation,
as explained on the next slide.
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Methods - some details - cross-validation
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Use for doctors

@ Clinical trial design: prognostic factors to be used for patient
allocation into different treatment groups - more research
needed

@ Determining patients with the worst prognosis for intensive
care treatment

23/25



References

@ Vapnik, V., Guyon, |. and Hastie, T., 1995. Support vector
machines. Mach. Learn, 20(3), pp.273-297.

@ Hughey, J.J., Hastie, T. and Butte, A.J., 2016. ZeitZeiger:
supervised learning for high-dimensional data from an
oscillatory system. Nucleic acids research, 44(8), pp.e80-e80.

@ Veretennikova, M.A., Sikorskii, A. and Boivin, M.J., 2018.
Parameters of stochastic models for electroencephalogram
data as biomarkers for child's neurodevelopment after cerebral
malaria. Journal of statistical distributions and applications,
5(1), pp.1-12.

@ Minas, G. and Rand, D.A., 2017. Long-time analytic
approximation of large stochastic oscillators: Simulation,
analysis and inference. PLoS computational biology, 13(7),
p.e1005676.

24 /25



References

e Villar, S.S., Bowden, J. and Wason, J., 2015. Multi-armed
bandit models for the optimal design of clinical trials: benefits
and challenges. Statistical science: a review journal of the
Institute of Mathematical Statistics, 30(2), p.199.

@ Reldgio, A., Westermark, P.O., Wallach, T., Schellenberg, K.,
Kramer, A. and Herzel, H., 2011. Tuning the mammalian
circadian clock: robust synergy of two loops. PLoS Comput
Biol, 7(12), p.e10023009.

o fMRI images from:
https://www.intechopen.com/books/adaptive-filtering-
applications/noise-removal-from-eeg-signals-in-
polisomnographic-records-applying-adaptive-filters-in-cascade

e EEG signal image from:
http://indexsmart.mirasmart.com/ISMRM2017 /PDFfiles/1462.html|
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