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* We discuss a generalization of Vieta theorem (Vieta's formulas) to the
case of Clifford geometric algebras.

* We compare the generalized Vieta's formulas with the ordinary
Vieta's formulas for characteristic polynomial containing eigenvalues.

* We discuss Gelfand - Retakh noncommutative Vieta theorem and use
it for the case of geometric algebras of small dimensions.

* The results can be used in symbolic computation and various
applications of geometric algebras in computer science, computer
graphics, computer vision, physics, and engineering.



Geometric Algebras @ CGI2022

Let us consider the real (Clifford) geometric algebra G, ,, n = p+q > 1 [12,5,14]
with the generators e,, a = 1,2,...,n and the identity element ¢ = 1. The

generators satisty
€a€h T €p€q = 27}&&-81 {I:b: 1,2}...?5*1?

where 1 = (n,) is the diagonal matrix with its first p entries equal to 1 and the
last ¢ entries equal to —1 on the diagonal. The grade involution and reversion
of an arbitrary element (a multivector) U € G, , are denoted by

U= (D" T=3 (-7 (U

0 k=0

where (U)}, is the projection of U onto the subspace g;q of grade k =0,1,...,n.
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Let us consider the following faithful representation (isomorphism) of the
complexified geometric algebra C® G, ,, n =p+q

Mat(2%,C) if n is even,

B:CRGpq— My, := {Mat(Z% C) & N[at(QnT_l ,C) if n is odd. (1)

The real geometric algebra G, , is isomorphic to some subalgebra of M, ,, be-
cause G, , C C® G, , and we can consider the representation of not minimal
dimension

B:Gpq — B(Gpq) C Mp,-

We can introduce (see [17]|) the notion of determinant
Det(U) := det(B(U)) € R, Ué€Gpq

and the notion of characteristic polynomial

o () :== Det(de —U) = AN — C'(l)AN_l —-=Cin-1)A —Cn) € g}fj,q = R,
U€Gyy N=231  Cuy=CnU)edl, =R, k=1,...,N, (2)

where gg , 18 a subspace of elements of grade 0, which we identify with scalars.
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Ordinary Vieta’s formulas -~

Let us denote the solutions of the characteristic equation ¢y (A) = 0 (i.e.
eigenvalues) by A1,..., Ay. By the Vieta’s formulas from matrix theory, we know
that

Cry = (—1)FH! > XiAi, - Ai,,  k=1,...,N,

1<igi<in< - <ip<n
in particular,
Cay=M+---+ Ay =Tr(U), el Ciny = —A1---An = —Det(U),
where Tr(U) := tr(8(U)) = N(U)o is the trace of U. The elements C(y), k =

1,...,N are elementary symmetrical polynomials in the variables A{, ..., An.



The case n=1 @ CGIl2022

In this case, the geometric algebra G, , is commutative and N = 2. We have
C(]_) =M+ M eER, C(z) = —MAX € R. (3)

But also we have

Coy=U+U€Gl =R, Cu=-U0€g’,

R. (4)

The elements y; := U and y5 := U are not scalars (and are not equal to the eigenvalues A; and As), but they are solutions of
the characteristic equation gy (z) = 0, £ = y1,y2 by the Cayley — Hamilton theorem. Using

N (U+U)N+UU =0,

we get the explicit formulas for the eigenvalues

Fae e,

Mo = 5(U+ T\ (U +0)2 - 00) = (U +T £/ (U - 0)2) = U)o = V0N, (5)

which do not coincide with the explicit formulas for ¥, o
y1,2 = (U)o = (U, (6)
because the scalar /((U);)? does not coincide with the vector (element of grade 1) (U);. We see that the role of the roots

A1.2 (which are complex scalars) of the characteristic equation is played by some combinations #; 5 of involutions of elements
(which are not scalars). In the case of degenerate eigenvalues, we have (IU}; = 0 and the coincidence A\ 5 = y; 2 = U = (U)oy.
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We have N = 2 and
Ciy=A+ X R, Ciz)y = —MA2 € R. (7)

But also we have
C{l}—U-I'UEgEqE C{g}——UUEgD =R (8)

Note that UU = UU in the case n = 2. The elements 11 := U and 3o := U are not scalars (and are not equal to the eigenvalues
A1 and As), but they are solutions of the characteristic equation ¢y (z) = 0, z = y;,y2 by the Cayley — Hamilton theorem.
Using

A2 — (U+U)A+UU =0,

we get the explicit formulas for the eigenvalues

Ma=2(U+0 £V W+ 07~ a00) = S0 +0 £ (U -0)2) = U)o £ VT + 0127, 9)

which do not coincide with the explicit formulas for y; 2

y12 = (U)o = ((Uh + (U)2), (10)

where the scalar \/((U); + (U)2)? = /({U)1)? + ((U)2)? is not equal to the expression (U); + (U)s. The role of the roots
A1 .2 (which are complex scalars) of the characteristic equation is played by some combinations y; » of involutions of elements
(which are not scalars).

In the case of degenerate eigenvalues, we have (U); = (U)2 = 0 and the coincidence A\; 2 = y12 = U = (U)g in the case
of two Jordan blocks; or ((U)1)? = —((U)2)? # 0 and A1 5 = (U)o # 1.2 = (U)o = ((U)1 + (U)s) in the case of one Jordan
block. For example, for U = 5e + %(Eg + e12), we have Ay o = 5 and y; 2 = 5e + %(Ez +e12) in the case n =p =2, ¢ = 0.
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Let us consider the case n = 3. We have N = 4 and the formulas

-

Cyy=U+U+U+U, Cp=-(UU+UU+UU+UU+UU +00),
C) =UUU +UUU +UUU +UUU,  Cuy=-UUUU. (11)
These formulas look like the ordinary Vieta's formulas for eigenvalues:

C{]} —_ }1.1 + )-.2 + )h;; + ;’\4, C{g} - —(;’kl}-.g + )h]_;"tﬁ + )'k]_}h..q + }sg}k:i + ;‘kg)h; + )hg)'l.g_l_),

Ci3) = A1A2A3 + A1A2A4 + A1A3Ad + A2 Az, Cla) = —A1A2A3)\4. (12)
The elements
y1:=U= U)o+ (U + U2+ 03, y2:=U= U)o+ (Uh—{U)2—(U)s
Yz 1= f} = (U)o —(U)1 + (U)a — (U)s, Yq 1= f:r = (U)o — (U1 — (U)a + (U)s,

are not scalars (and are not equal to the eigenvalues A, Ao, A3, Ay), but they are solutions of the characteristic equation
wul(x) =0, x = y1,¥2, Y3, ¥4 by the Cayley — Hamilton theorem.

We call the formulas (4), (8), (11) and their analogues for the cases n > 4 generalized Vieta’s formulas in geometric
algebra. The formulas (4), (8), (11) were proved in [17] using recursive formulas for the characteristic polynomial coefficients
following from the Faddeev — LeVerrier algorithm. In this work, we present an alternative proof of these formulas using the
techniques of noncommutative symmetric functions.
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Let us discuss the following Gelfand — Retakh theorem (known as the noncommutative Vieta theorem [10]).

Theorem 1. If {x1,...,zxn} is an ordered generic set (i.e. Vandermonde quasideterminants vy are defined and invertible
for allk =1,...,N) of solutions of the equation

Py(z) =z —a1z¥ ' — - —any =0 (13)

over a skew-field, then for k=1,2,... ,N:

ap = (—l)h—l_l Z yih. T y:j'.-

1<iy<io<---<igp< N

where
—1
Y = VTV .

In [10], the definition of Vandermonde quasideterminants v is given (see also [8,9]). In this paper, we use another definition
of the elements v; from [7]:

v = Pr_1(xp) = mi_l — (Y1 +---+ yl)mi_z 4o+ (=D Yy gy (14)
In particular, we have

v =1, Vg = T3 — Y1, Vg = mga — (Y2 + y1)x3 + Y2u1. (15)
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Remark 1. The condition [vy, x| = 0 is equivalent to
(Ej,zr] =0, g7=1,...,k—1,

where E;, 5 =1,..., k — 1 are noncommutative elementary symmetric polyno-

mials in the variables yr_1, ..., y1:
Ev=yr-1+ -+ 11, Ex—1=Yk-1""-Yy2u1.

For example, in the particular case N = 4, when all [vy, 2] =0, k=1,...,N,
we can take yp = xp, £ = 1,2, 3,4, in the case

[5«"215«"1] =0, [$3:$2I1] = 0, [I:a:ﬁz —I—Ill = 0, [ﬁ«"41$3$25ﬂ‘1] = 0,

[I-’-la r3rz + Tr3Tr1 + $2$1] = 0, [I-i! T3+ T2 + Il] = (0.

We use this particular case below in G, , with n =p+ ¢ = 3.
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Application of noncommutative Vieta theorem
to Geometric algebras

Let us apply Theorem 1 to the particular case of the characteristic polynomial
v (A) in geometric algebra G, 4. The elements ap = Cpy € R, k =1,... N

from (13) are scalars now. We need N solutions xy, x2,...x N of the characterstic
equation g (x) = 0. By the Cayley — Hamilton theorem, we can take x; = U:

pu(U) = 0. (19)

Theorem 2. We have
pu(A) = op(A) = 95 (A) = e=(A), (20)

ou(U) = ou(U) = pu(U) =0. (21)
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The case n = 1

In this case, the geometric algebra is commutative. We can take y; =z, = U
in Theorem 1 by the Cayley — Hamilton theorem. The element x2 = U satisfies
the characteristic equation (scc Theorem 2). We have vo = 290 — 21 = U — U =

—2(U)1. If (U)1 # 0, then y2 = 0 = U and we obtain the formulas (4).

The case n = 2

We can take y; = 7 = U in Theorem 1 by the Cayley — Hamilton theorem.
The element zo = U satisfies the characteristic equation (see Theorem 2). We
have v9 = x90 — 11 = U-U = —2(U)o. If (U)o = 0, then we can use the
formulas from the case n = 1. If (U)s # 0, then vy = Aeja, A # 0 is invertible

and y2 = v9 5’112_ 1 — f} because the pseudoscalar e;2 commutes with all even
elements and anticommutes with all odd elements. We get the formulas (8).
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The case n = 3

We can take y; =z, = U in Theorem 1 by the Ca,j,r]ey Hamilton theorem.

Let us consider r, = U We have v9 = 19 — 11 = U — U and [va, 25] = 0 because [U, U] = () in the case n = 3. Thus we
can take yo = xs. N
Let us consider x5 = U. We have

[—"3311’3] - [I:i, 1-‘% - (1-'1 + Iz)—"f:; + 1-‘2-"31] =0,

because the elements z; + x2 = U + U and Tol] = UuU belong to the center Cen(G, ,) = g;jq <) g;j_‘q, and can take y; = x3.
Let us consider x4 = U. We have

[z4,v4] = [$4afﬁ — (x5 +x2 + 1-‘1)-'1-'3 + (z322 + 2371 + 21 )24 — (T32271)] = 0,

because the elements x; + 2o = U + U and Tol] = UuU belong to the center Cen(G, ,), and x3zy = z4x3. Le. UU = UU in
the case n = 3. We take yy = x4.

We obtain y; = 1, k= 1,2,3,4 and the following formulas, which are another version of the formulas (11):

Coy=U+U+U+T, C{Q]=—(ﬁﬁ+ﬁﬁ+ﬁU+ﬁﬁ+ﬁU+ﬁU},
Cs) = UOU + U0U + 00U + 00U, Cuay = ~UDTU. (21)

Note that we obtain these formulas for the element U with invertible expressions vs, v3, and vy (for other elements U, other

sequences Tj, T, T3, r4 can be considered). Also note that not every sequence 1, y2, y3, ys4 from {[7, U \ ff, U} gives the
correct Vieta’s formulas (see Theorem 3 and Lemma 7 in [17], the formulas (11) and (21) are two of several correct forms).
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The cases n > 4

The generalized Vieta's formulas in the cases n > 4 are more complicated. We use the additional (triangle) operation

T

UA . Z(_l)uk_m:;:zm—a] (U = Z (U — Z (U (22)

k=0 E=0.1.2.3 mod 8 k=4.5.6.7T mod 8

Note that

Det(U2) # Det(U),  pua(A) # oV, ¢u(U2) #0 (23)

in the general case (compare with the statements of Theorem 2).
In the case n = 4. the generalized Vieta's formulas have the following form

Coy=U+U+U?+U?  Cu=—-(UU+UU»+UU»+U00» + 00> 4+ (U0)>),
C = UUU +UUU» + U(UU)® +UUU)®,  Cuy=-UUUU), (24)

where the coefficients C'y), k = 1,2,3,4 are not elementary symmetrical polynomials because of the additional operation of
conjugation /. These formulas look like the ordinary Vieta’s formulas

Ciry = A1+ Az + Az + g, Cra) = —(A1Az2 + A1Az 4+ A1 Aq + A2As3 + Aoy + Azhy),
Clay = MAaAs + Aidods + Adads + Aodshs,  Cray = —Mdadshs, (25)

if we ignore the operation /. The analogues of the formulas (24) for the cases n = 5,6 are presented in [1] (see Theorem
5.1 and Section 8). These formulas also have the form of elementary symmetric polynomials, only if we ignore the operation
A\, and can be interpreted as generalized noncommutative Vieta’s formulas. These formulas do not follow directly from the
Gelfand — Retakh noncommutative Vieta theorem, it is not easy task to guess the “right” (generic) ordered set of solutions
T1, T2, T3, ...xy of the characteristic equation to obtain the elements 41, y2, ¥3, ..., yny we need in the generalized Vieta's
formulas. This is a task for further research.



Conclusions @ CGl2022

* We discussed a generalization of Vieta's formulas to the case of
geometric algebras of small dimensions:

- We applied the Gelfand - Retakh theorem to the characteristic polynomial
in geometric algebras.

- We showed how to express characteristic coefficients in terms of
combinations of various involutions of elements.

- We compared the generalized Vieta's formulas with the ordinary Vieta's
formulas for eigenvalues. The role of the roots (which are complex scalars)
of the characteristic equation is played by some combinations of
involutions of elements (which are not scalars).

* We hope that the new approach (related to noncommutative symmetric
functions) will help to find more optimized formulas for the determinant
and inverse in geometric algebras in the cases n>6.



@ CGIl2022

References

1. Abdulkhaev, K., Shirokov, D.: Basis-free Formulas for Characteristic Polynomial Coefficients in Geometric Algebras, Advances in
Applied Clifford Algebras (to appear), arXiv:2205.13449 (2022)

2. Abdulkhaev, K., Shirokov, D.: On Explicit Formulas for Characteristic Polynomial Coefficients in Geometric Algebras. In:
Magnenat-Thalmann N. et al. (eds) Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science, vol 13002,
670-681. Springer, Cham (2021)

3. Acus, A., Dargys, A.: The Inverse of a Multivector: Beyond the Threshold p + ¢ = 5, Adv. Appl. Clifford Algebras 28, 65 (2018)

4. Connes, A., Schwarz, A.: Matrix Vieta Theorem Revisited, Lett. Math. Phys. 39 (1997), 349-353

5. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

6. Fuchs, D., Schwarz, A.: Matrix Vieta Theorem, Amer. Math. Soc. Transl. ser. 2, vol. 169, Amer. Math. Soc., Providence, 1995

7. Fung, M. K.: On a Simple Derivation of the Noncommutative Vieta Theorem. Chinese Journal of Physics, 44(5), 341-347 (2006)

8. Gelfand, 1., Krob, D., Lascoux, A., Retakh, V. and Thibon, J-Y.: Noncommutative Symmetric Functions, Advances in Math., 112
(1995), 218-348

9. Gelfand, 1., Retakh, V.: Quasideterminants, I, Selecta Math., 3 (1997), 417-546

10. Gelfand, 1., Retakh, V.: Noncommutative Vieta Theorem and Symmetric Functions. In: Gelfand .M., Lepowsky J., Smirnov M.M.
(eds) The Gelfand Mathematical Seminars, 1993-1995. Birkhduser Boston. 1996. https://arxiv.org/abs/g-alg/9507010v1

11. Helmstetter, J.: Characteristic polynomials in Clifford algebras and in more general algebras. Adv. Appl. Clifford Algebras 29, 30
(2019)

12. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus - A Unified Language for Mathematical Physics, Reidel Pub-
lishing Company, Dordrecht Holland (1984)

13. Hitzer, E., Sangwine, S.: Multivector and multivector matrix inverses in real Clifford algebras. Applied Mathematics and Compu-
tation 311, pp. 375-389 (2017)

14. Lounesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge (1997)

15. Shirokov, D.: Basis-free solution to Sylvester equation in Clifford algebra of arbitrary dimension. Advances in Applied Clifford
Algebras 31, 70 (2021)

16. Shirokov, D.: On basis-free solution to Sylvester equation in geometric algebra. In: Magnenat-Thalmann N. et al. (eds) Advances
in Computer Graphics. CGI 2020. Lecture Notes in Computer Science, vol 12221, 541-548. Springer, Cham (2020)

17. Shirokov, D.: On computing the determinant, other characteristic polynomial coefficients, and inverse in Clifford algebras of
arbitrary dimension. Computational and Applied Mathematics 40, 173 (2021)

18. Shirokov, D.: Concepts of trace, determinant and inverse of Clifford algebra elements. In: Progress in analysis. Proceedings of
the 8th congress of ISAAC, Volume 1, Peoples’ Friendship University of Russia (ISBN 978-5-209-04582-3/hbk), 2012, 187-194;
arXiv:1108.5447 (2011)



@ CGI2022

Thank you for your attention



