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Let us consider pseudo-Euclidean space Rp,q, n = p + q or Euclidean space Rn of
arbitrary finite dimension n. We denote Cartesian coordinates by xµ, µ = 1, . . . , n
and partial derivatives by ∂µ = ∂/∂xµ.
Let us consider

G = SU(2) = {S ∈ Mat(2,C) |S†S = 1, detS = 1},
g = su(2) = {S ∈ Mat(2,C) |S† = −S , trS = 0}, dim g = 3.

Let us consider the Yang-Mills equations

∂µAν − ∂νAµ − [Aµ,Aν ] = Fµν , (1)
∂µF

µν − [Aµ,F
µν ] = Jν , (2)

where Aµ : Rp,q → g is the potential, Jν : Rp,q → g is the non-Abelian current,
Fµν = −Fνµ : Rp,q → g is the strength of the Yang-Mills field.
The metric tensor of Rp,q is given by the diagonal matrix

η = ‖ηµν‖ = ‖ηµν‖ = diag(1, . . . , 1,−1, . . . ,−1)

with p ones and q minus ones on the diagonal. We can raise or lower indices of
components of tensor fields using metric tensor, for example, Fµν = ηµαηνβFαβ .
We may verify that the current (2) satisfies the non-Abelian conservation law

∂νJ
ν − [Aν , J

ν ] = 0. (3)
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The Yang-Mills equations are gauge invariant w.r.t. the transformations

Aµ → S−1AµS − S−1∂µS , Fµν → S−1FµνS , Jν → S−1JνS , (4)
where S = S(x) : Rp,q → G.

Particular classes of solutions (monopoles, instantons, merons, etc.):
Wu T.T., Yang C.N. (1968), ’t Hooft G. (1974), Polyakov A.M. (1975), Belavin
A.A., Polyakov A.M., Schwartz A.S., Tyupkin Yu.S. (1975), Witten E. (1977),
Atiyah M., Drinfeld V., Hitchin N., Manin Yu. (1978), de Alfaro V., Fubini S.,
Furlan G. (1976), . . .

The well-known classes of solutions of the Yang-Mills equations are described in
detail in various reviews:

Actor A., Classical solutions of SU(2) Yang-Mills theories, Rev.Mod.Phys. 51(1979).

Zhdanov R.Z., Lahno V.I., Symmetry and Exact Solutions of the Maxwell and SU(2)
Yang-Mills Equations, Adv.Chem.Phys. Modern Nonlinear Optics 119 II (2001).
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Suppose that Aµ and Jµ do not depend on x ∈ Rp,q. We obtain the following
algebraic system of equations

[Aµ, [A
µ,Aν ]] = Jν , ν = 1, . . . , n. (5)

We have the following expression for the strength of the Yang-Mills field

Fµν = −[Aµ,Aν ]. (6)

We want to obtain all solutions Aµ ∈ su(2) of (5) for arbitrary Jν ∈ su(2).
Constant solutions of the Yang-Mills equations with zero current Jν = 0 were
considered in the following papers:

Schimming R.: On constant solutions of the Yang-Mills equations. Arch. Math.
24:2, 65–73 (1988).

Schimming R., Mundt E.: Constant potential solutions of the Yang-Mills equation.
J. Math. Phys. 33, 4250 (1992).

Note that two dimensional Yang-Mills theory is discussed in

Gorsky A., Nekrasov N.: Hamiltonian systems of Calogero type and two dimensional
Yang-Mills theory, Nucl.Phys. B 414, 213–238 (1994).

and other papers. We consider the case n ≥ 2 further for the sake of completeness.
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Let us consider the Pauli matrices σa, a = 1, 2, 3

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (7)

We can take the following basis of the Lie algebra su(2)

τ1 =
σ1

2i
, τ2 =

σ2

2i
, τ3 =

σ3

2i
. (8)

with (τ a)† = −τ a, tr τ a = 0, [τ a, τb] = εabcτ
c ,

where the structural constants of the Lie algebra su(2) are the antisymmetric
Levi-Civita symbol, ε123 = 1. For the potential and the current, we have

Aµ = Aµaτ
a, Jµ = Jµaτ

a, Aµa, J
µ
a ∈ R. (9)

Latin indices take values a = 1, 2, 3 and Greek indices take values µ = 1, 2, . . . , n.
Substituting (9) into (5), we get

AµcA
µ
aA

ν
bε

ab
dε

cd
k = Jνk , ν = 1, . . . , n, k = 1, 2, 3. (10)

We obtain 3n equations (k = 1, 2, 3, ν = 1, 2, . . . , n) for 3n unknown Aνk and 3n
known Jνk . We can consider (10) as a system of equations for elements of two
matrices An×3 = ||Aνk || and Jn×3 = ||Jνk ||.
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Lemma

The system of equations AµcA
µ
aA

ν
bε

ab
dε

cd
k = Jνk , ν = 1, . . . , n, k = 1, 2, 3,

is invariant under the following transformations

1) Aµb → Aµap
a
b, Jµb → Jµap

a
b,

i.e. A→ AP, J → JP, P = ||pab|| ∈ SO(3),

where Aµ → S−1AµS , Jν → S−1JνS ,

S−1τ aS = pabτ
b, ±S ∈ SU(2) ' Spin(3),

2) Aνa → qνµA
µ
a, Jνa → qνµJ

µ
a,

i.e. A→ QA, J → QJ, Q = ||qµν || ∈ O(p, q),

where xµ → qµν x
ν .

Combining gauge and orthogonal transformations, we conclude that the system is
invariant under the transformation

Aνb → qνµA
µ
ap

a
b, Jνb → qνµJ

µ
ap

a
b,

i.e. A→ QAP, J → QJP, P ∈ SO(3), Q ∈ O(p, q).
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Theorem (Singular Value Decomposition (SVD))

For an arbitrary real matrix An×N of the size n × N, there exist orthogonal
matrices Ln×n ∈ O(n) and RN×N ∈ O(N) such that

LT
n×nAn×NRN×N = Dn×N , (11)

where

Dn×N = diag(µ1, . . . , µs), s = min(n,N), µ1 ≥ µ2 ≥ · · · ≥ µs ≥ 0.

The numbers µ1, . . . , µs are called the singular values, the columns li of the
matrix L are called the left singular vectors, the columns ri of the matrix R are
called the right singular vectors.
The columns of the matrix L are eigenvectors of the matrix AAT, and the columns
of the matrix R are eigenvectors of the matrix ATA.
The squares of singular values are eigenvalues of the corresponding matrices.
From this fact, it follows that singular values are uniquely determined.
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Theorem (for Euclidean case)

Let A = ||Aνk ||, J = ||Jνk || satisfy the system of 3n cubic equations

AµcA
µ
aA

ν
bε

ab
dε

cd
k = Jνk , ν = 1, . . . , n, k = 1, 2, 3. (12)

Then there exist matrices P ∈ SO(3) and Q ∈ O(n) such that QAP is diagonal.
For all such matrices P and Q, the matrix QJP is diagonal too and the system
(12) takes the following form under the transformation A→ QAP, J → QJP:

in the case n = 2: − a1(a2)2 = j1, (13)
−a2(a1)2 = j2,

in the cases n ≥ 3 : −a1((a2)2 + (a3)2) = j1,

−a2((a1)2 + (a3)2) = j2, (14)
−a3((a1)2 + (a2)2) = j3.

We denote diagonal elements of the matrix QAP by a1, a2, a3 (or a1, a2) and
diagonal elements of the matrix QJP by j1, j2, j3 (or j1, j2).
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Suppose we have known matrix J and want to obtain all solutions A of the system
(12). We can always calculate singular values j1, j2, j3 of J and solve the system
(14). Finally, we obtain all solutions AD = diag(a1, a2, a3) of the system (12) but
in some other system of coordinates depending on Q ∈ O(n) and with gauge
fixing depending on P ∈ SO(3). The matrix A = Q−1ADP

−1 will be solution of
the system (12) in the original system of coordinates and with the original gauge
fixing.

Note that Q−1Q−11 ADP
−1
1 P−1, for all Q1 ∈ O(n) and P1 ∈ SO(3) such that

Q1JDP1 = JD , JD = diag(j1, j2, j3), will be also solutions of the system (12) in the
original system of coordinates and with the original gauge fixing because of
Lemma.
Example. If the matrix J = 0, then all singular values of this matrix equal zero
and we can take Q = P = 1 for its SVD. We solve the system (14) for
j1 = j2 = j3 = 0 and obtain all solutions AD = diag(a1, a2, a3) of this system. We
have Q1JDP1 = JD for JD = 0 and any Q1 ∈ O(n), P1 ∈ SO(3). Therefore, the
matrices Q1ADP1 for all Q1 ∈ O(n) and P1 ∈ SO(3) will be solutions of the
system (12) because of Lemma.
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The systems (13), (14) can be rewritten in the following way using bk := −ak :

n = 2 : b1b
2
2 = j1, b2b

2
1 = j2, (15)

n ≥ 3 : b1(b22 + b23) = j1, b2(b21 + b23) = j2, b3(b21 + b22) = j3. (16)

The system (16) has the following symmetry (similarly for (15)): if we change the
sign of some jk , k = 1, 2, 3, then we must change the sign of the corresponding
bk , k = 1, 2, 3. Using SVD, we can always get nonnegative jk , k = 1, 2, 3.
Lemma. The system of equations (15) has the following general solution:

1 in the case j1 = j2 = 0, has solutions (b1, 0), (0, b2) for all b1, b2 ∈ R;
2 in the cases j1 = 0, j2 6= 0; j1 6= 0, j2 = 0, has no solutions;
3 in the case j1 6= 0, j2 6= 0, has a unique solution

b1 = 3

√
j22
j1
, b2 = 3

√
j21
j2
.

Lemma. If the system (16) has a solution (b1, b2, b3), where b1 6= 0, b2 6= 0,
b3 6= 0, then this system has also a solution ( K

b1
, K
b2
, K
b3

), where K = (b1b2b3)
2
3 .

Example. Let us take j1 = 13, j2 = 20, j3 = 15. Then the system (16) has

solutions (b1, b2, b3) = (1, 2, 3) and (6
2
3 , 6

2
3
2 ,

6
2
3
3 ).
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Lemma. The system of equations

b1(b22 + b23) = j1, b2(b21 + b23) = j2, b3(b21 + b22) = j3

has the following general solution:
1) in the case j1 = j2 = j3 = 0, has solutions

(b1, 0, 0), (0, b2, 0), and (0, 0, b3), b1, b2, b3 ∈ R;

2) in the cases j1 = j2 = 0, j3 6= 0 (or similar cases with circular permutation), has
no solutions;
3) in the case j1 6= 0, j2 6= 0, j3 = 0 (or similar cases with circular permutation),
has a unique solution

b1 = 3

√
j22
j1
, b2 = 3

√
j21
j2
, b3 = 0;

4) in the case j1 = j2 = j3 6= 0, has a unique solution

b1 = b2 = b3 =
3

√
j1
2

;
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5) in the case of not all the same j1, j2, j3 > 0, has two solutions

(b1+, b2+, b3+), (b1−, b2−, b3−)

with the following expression for K from the previous lemma

K := b1+b1− = b2+b2− = b3+b3− = (b1+b2+b3+)
2
3 = (b1−b2−b3−)

2
3 :

5a) in the case j1 = j2 > j3 > 0 (or similar cases with circular permutation)

b1± = b2± = 3

√
j3
2z±

, b3± = z±b1±, z± =
j1 ±

√
j21 − j23
j3

.

Moreover, z+z− = 1, K = (
j3
2

)
2
3 .

5b) in the case j3 > j1 = j2 > 0 (or similar cases with circular permutation):

b1± =
1
w±

b3, b2± = w±b3, b3± = b3 =
3

√
j1
s
,

w± =
s ±
√
s2 − 4
2

, s =
j3 +

√
j23 + 8j21
2j1

.

Moreover, w+w− = 1, b1± = b2∓, K = (
j1
s

)
2
3 .
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5c) in the case of all different j1, j2, j3 > 0:

b1± = 3

√
j3

t0y±z±
, b2± = y±b1±, b3± = z±b1±,

z± =

√
y±(j1 − j2y±)

j2 − j1y±
, y± =

t0 ±
√

t20 − 4
2

,

where t0 > 2 is the solution (it always exists, moreover, it is bigger than j2
j1

+ j1
j2
)

of the cubic equation j1j2t
3 − (j21 + j22 + j23 )t2 + 4j23 = 0.

Moreover, y+y− = 1, z+z− = 1, K = (
j3
t0

)
2
3 .
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Consequences for the strength of the Yang-Mills field.
In the case of the constant potential Aµ of the Yang-Mills field, we have the
following expression for the strength

Fµν = −[Aµ,Aν ] = −[Aµaτ
a,Aνbτ

b] = −AµaAνbεabcτ c = Fµνcτ
c . (17)

We take a system of coordinates depending on Q ∈ O(n) and a gauge fixing
depending on P ∈ SO(3) such that the matrices A and J are diagonal.
In the case of dimension n = 2:

1 In the case J = 0, we have A = 0 or A =

(
a 0 0
0 0 0

)
, a ∈ R \ {0}, F = 0.

2 In the case rank(J) = 1, we have no constant solutions.
3 In the case rank(J) = 2, we have a unique solution

A =

(
a1 0 0
0 a2 0

)
, a1 = − 3

√
j22
j1
, a2 = 3

√
j21
j2
.

For the strength, we have the following nonzero components of the strength

F 12 = −F 21 = − 3
√
j1j2τ

3. (18)

We have the following expression for the invariant:

F 2 = FµνF
µν = −1

2
3
√

(j1j2)21. (19)
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In the cases of dimension n ≥ 3:
1 In the case J = 0, we have nonzero potential Aµ but zero strength Fµν = 0.
2 In the case rank(J) = 1, we have no constant solutions.
3 In the case rank(J) = 2, we have a unique solution. We have again (18) and

(19), where j1, j2, and j3 = 0 are singular values of the matrix J.
4 In the case rank(J) = 3, we have one or two solutions.

1) In the case of all the same singular values j := j1 = j2 = j3 6= 0, we have a
unique solution

A =


a 0 0
0 a 0
0 0 a
0 0 0
. . . . . . . . .
0 0 0

 , a = − 3

√
j

2
. (20)

F 12 = −F 21 = − 3

√
j2

4
τ3, F 23 = −F 32 = − 3

√
j2

4
τ1, F 31 = −F 13 = − 3

√
j2

4
τ2.

In this case, we have F 2 = FµνF
µν = −3

2
3
√

j4

161 6= 0.
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2) In the case of not all the same singular values j1, j2, j3 of the matrix J, we have
two different solutions

A =


−b1± 0 0
0 −b2± 0
0 0 −b3±
0 0 0
. . . . . . . . .
0 0 0

 , (21)

where bk±, k = 1, 2, 3 are from Case (v) of Lemma. We have

F 12
± = −F 21

± = −b1±b2±τ3, F 23
± = −F 32

± = −b2±b3±τ1,

F 31
± = −F 13

± = −b3±b1±τ2,

F 2
± = −1

2
((b1±b2±)2 + (b2±b3±)2 + (b3±b1±)2)1 6= 0.

Dmitry Shirokov (dm.shirokov@gmail.com) Akademgorodok, 2021 16 / 24



Lemma. In the case of not all the same j1, j2, j3, the invariant F 2
± takes the form:

1 in the case j1 = j2 > j3 > 0 (or similar cases with circular permutation):

F 2
± =

−K 2(1 + 2z2±)

2z
4
3
±

1, F 2
+ 6= F 2

−, (22)

where z± =
j1 ±

√
j21 − j23
j3

, K = (
j3
2

)
2
3 .

2 in the case j3 > j1 = j2 > 0 (or similar cases with circular permutation):

F 2
± =

−K 2(s2 − 1)

2
1, F 2

+ = F 2
−, (23)

where s =
j3 +

√
j23 + 8j21
2j1

> 2, K = (
j1
s

)
2
3 .

3 in the case of all different j1, j2, j3 > 0:

F 2
± =

−K 2(y2± + z2± + y2±z
2
±)

2(y±z±)
4
3

1, F 2
+ 6= F 2

−, (24)

where K = ( j3
t0

)
2
3 , and y±, z±, t0 are from Case 5c) of previous Lemma.
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Theorem (HSVD)

For arbitrary matrix An×N ∈ Mat(R), there exist matrices R ∈ O(N) and
L ∈ O(p, q) such that

LTAR = ΣA, ΣA =


Xx 0 0 0
0 0 Id 0
0 0 0 0
0 Yy 0 0
0 0 Id 0
0 0 0 0

 ∈ Matn×N(R), (25)

where the first block of the matrix ΣA has p rows and the second block has q
rows, Xx and Yy are diagonal matrices of the corresponding sizes x and y with all
positive uniquely determined diagonal elements, Id is the identity matrix of size d .
Here we have

d = rank(A)− rank(ATηA), x + y = rank(ATηA),

x is the number of positive eigenvalues of the matrix ATηA, y is the number of
negative eigenvalues of the matrix ATηA.
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Theorem. Let A = ||Aνk ||, J = ||Jνk || satisfy the system of 3n cubic equations

AµcA
µ
aA
ν
bε

ab
d ε

cd
k = Jνk , ν = 1, . . . , n, k = 1, 2, 3. (26)

Then: 1) There exist matrices P ∈ SO(3) and Q ∈ O(p, q) such that the matrix QAP is in the
canonical form (with parameters xA, yA, dA)

ΣA = QAP =


XxA 0 0 0
0 0 IdA 0
0 0 0 0
0 YyA 0 0
0 0 IdA 0
0 0 0 0

 .

For all such matrices P and Q, the matrix QJP has the following form

QJP =


ZxA 0 0 0
0 0 αIdA 0
0 0 0 0
0 WyA 0 0
0 0 αIdA 0
0 0 0 0

 ,

where elements of the diagonal matrices Z and W are real numbers (can be zero), α ∈ R (can
be zero).
2) For parameters of the matrices A and J, we have:

xJ ≤ xA, yJ ≤ yA, dJ = dA > 0 or dJ = 0, dA ≥ 0.
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3) There exist matrices P ∈ SO(3) and Q ∈ O(p, q) such that the matrix QJP is in the
canonical form (with parameters xJ , yJ , dJ)

ΣJ = QJP =


XxJ 0 0 0
0 0 IdJ 0
0 0 0 0
0 YyJ 0 0
0 0 IdJ 0
0 0 0 0

 ,

and QAP has the following form

QAP =



KxJ 0 0 0 0 0 0
0 0 βIdJ 0 0 0 0
0 0 0 LxA−xJ 0 0 0
0 0 0 0 0 0 IdA−dJ
0 0 0 0 0 0 0
0 MyJ 0 0 0 0 0
0 0 βIdJ 0 0 0 0
0 0 0 0 NyA−yJ 0 0
0 0 0 0 0 0 IdA−dJ
0 0 0 0 0 0 0


,

where β ∈ R \ {0}; elements of the diagonal matrices K , L, M, N are arbitrary nonzero real
numbers.
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Summary for the case R1,1:
dJ xJ yJ dA xA yA A F F 2

0 1 1 0 1 1 1: see (27) 1: see (28) 1: see (29)
0 1 0 ø ø ø
0 0 1 ø ø ø
0 0 0 0 0 0 A = 0 F = 0 F 2 = 0

0 1 0 ∞: see (30) F = 0 F 2 = 0
0 0 1 ∞: see (31) F = 0 F 2 = 0
1 0 0 1: see (32) F = 0 F 2 = 0

1 0 0 ø ø ø

A =

(
a1 0 0
0 a2 0

)
, a1 =

3

√
j22
j1
, a2 = − 3

√
j21
j2
. (27)

F 12 = −F 21 = 3
√

j1j2τ
3, (28)

F 2 = FµνF
µν =

1
2

3
√

(j1j2)2I2 6= 0. (29)

A =

(
a1 0 0
0 0 0

)
, a1 ∈ R \ {0}. (30)

A =

(
0 0 0
a1 0 0

)
, a1 ∈ R \ {0}. (31)

A =

(
1 0 0
1 0 0

)
. (32)
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Summary for the case Rp,q, p + q ≥ 2:

p, q dJ xJ yJ add.cond. dA xA yA A F F2

p ≥ 3, q ≥ 1 0 3 0 j1 = j2 = j3 0 3 0 1:. . . 1:. . . 1:. . .
p ≥ 3, q ≥ 1 0 3 0 j1 = j2 > j3 0 3 0 2:. . . 2:. . . 2:. . .
p ≥ 3, q ≥ 1 0 3 0 j3 > j1 = j2 0 3 0 2:. . . 2:. . . 1:. . .
p ≥ 3, q ≥ 1 0 3 0 all different j1, j2, j3 0 3 0 2:. . . 2:. . . 2:. . .
p ≥ 1, q ≥ 3 0 0 3 j1 = j2 = j3 0 0 3 1:. . . 1:. . . 1:. . .
p ≥ 1, q ≥ 3 0 0 3 j1 = j2 > j3 0 0 3 2:. . . 2:. . . 2:. . .
p ≥ 1, q ≥ 3 0 0 3 j3 > j1 = j2 0 0 3 2:. . . 2:. . . 1:. . .
p ≥ 1, q ≥ 3 0 0 3 all different j1, j2, j3 0 0 3 2:. . . 2:. . . 2:. . .
p ≥ 2, q ≥ 1 0 2 1 j1 = j2 <

j3
2
√

2
0 2 1 6:. . . 6:. . . 4 or 3:. . .

p ≥ 2, q ≥ 1 0 2 1 j1 = j2 =
j3

2
√

2
0 2 1 4:. . . 4:. . . F2 = 0 and 2:. . .

p ≥ 2, q ≥ 1 0 2 1 j1 = j2 >
j3

2
√

2
0 2 1 2:. . . 2:. . . 2:. . .

p ≥ 2, q ≥ 1 0 2 1 j1 6= j2, j
2
3
3 > j

2
3
2 + j

2
3
1 0 2 1 6:. . . 6:. . . 3-6:. . .

p ≥ 2, q ≥ 1 0 2 1 j1 6= j2, j
2
3
3 = j

2
3
2 + j

2
3
1 0 2 1 4:. . . 4:. . . F2 = 0 and 3:. . .

p ≥ 2, q ≥ 1 0 2 1 j1 6= j2, j
2
3
3 < j

2
3
2 + j

2
3
1 0 2 1 2:. . . 2:. . . 2:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 = j1 <
j2

2
√

2
0 1 2 6:. . . 6:. . . 4 or 3:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 = j1 =
j2

2
√

2
0 1 2 4:. . . 4:. . . F2 = 0 and 2:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 = j1 >
j2

2
√

2
0 1 2 2:. . . 2:. . . 2:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 6= j1, j
2
3
2 > j

2
3
3 + j

2
3
1 0 1 2 6:. . . 6:. . . 3-6:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 6= j1, j
2
3
2 = j

2
3
3 + j

2
3
1 0 1 2 4:. . . 4:. . . F2 = 0 and 3:. . .

p ≥ 1, q ≥ 2 0 1 2 j3 6= j1, j
2
3
2 < j

2
3
3 + j

2
3
1 0 1 2 2:. . . 2:. . . 2:. . .
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p, q dJ xJ yJ add.cond. dA xA yA A F F2

p ≥ 2, q ≥ 1 0 2 0 0 2 0 1:. . . 1:. . . 1:. . .
p ≥ 1, q ≥ 2 0 0 2 0 0 2 1:. . . 1:. . . 1:. . .
p ≥ 1, q ≥ 1 0 1 1 0 1 1 1:. . . 1:. . . 1:. . .
p ≥ 2, q ≥ 2 0 1 1 j1 = j2 0 2 2 1:. . . 1:. . . 1:. . .
p ≥ 2, q ≥ 1 0 1 1 j2 > j1 0 2 1 4:. . . 4:. . . 2:. . .
p ≥ 1, q ≥ 2 0 1 1 j1 > j2 0 1 2 4:. . . 4:. . . 2:. . .
p ≥ 1, q = 1 0 1 0 ø ø ø
p ≥ 1, q ≥ 2 0 1 0 0 1 2 4:. . . 4:. . . 1:. . .
p = 1, q ≥ 1 0 0 1 ø ø ø
p ≥ 2, q ≥ 1 0 0 1 0 2 1 4:. . . 4:. . . 1:. . .
p ≥ 1, q ≥ 1 0 0 0 0 0 0 A = 0 F = 0 F2 = 0
p ≥ 1, q ≥ 1 0 0 0 0 1 0 ∞:. . . F = 0 F2 = 0
p ≥ 1, q ≥ 1 0 0 0 0 0 1 ∞:. . . F = 0 F2 = 0
p ≥ 1, q ≥ 1 0 0 0 1 0 0 1:. . . F = 0 F2 = 0
p ≥ 2, q ≥ 2 0 0 0 2 0 0 1:. . . 1:. . . F2 = 0
p ≥ 3, q ≥ 3 0 0 0 3 0 0 1:. . . 1:. . . F2 = 0
p ≥ 3, q ≥ 1 1 2 0 1 2 0 1:. . . 1:. . . 1:. . .
p ≥ 1, q ≥ 3 1 0 2 1 0 2 1:. . . 1:. . . 1:. . .
p ≥ 2, q ≥ 2 1 1 1 j1 = j2 ø ø ø
p ≥ 2, q ≥ 2 1 1 1 j1 6= j2 1 1 1 1:. . . 1:. . . 1:. . .
p ≥ 2, q ≥ 1 1 1 0 ø ø ø

p ≥ 1, q ≥ 2 1 0 1 ø ø ø

p = 1, q = 1 1 0 0 ø ø ø

p ≥ 2, q ≥ 1 1 0 0 1 1 0 ∞:. . . ∞:. . . F2 = 0
p ≥ 1, q ≥ 2 1 0 0 1 0 1 ∞:. . . ∞:. . . F2 = 0
p ≥ 3, q ≥ 2 2 1 0 ø ø ø

p ≥ 2, q ≥ 3 2 0 1 ø ø ø

p = 2, q = 2 2 0 0 ø ø ø

p ≥ 3, q ≥ 2 2 0 0 2 1 0 ∞:. . . ∞:. . . F2 = 0
p ≥ 2, q ≥ 3 2 0 0 2 0 1 ∞:. . . ∞:. . . F2 = 0
p ≥ 3, q ≥ 3 3 0 0 ø ø ø
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We obtain all constant solutions of SU(2) Yang-Mills equations in Rn for arbitrary current.
We prove that the number (0, 1, or 2) of solutions in terms of the strength F depends on
the singular values of the matrix J. The explicit form of these solutions and the invariant
F 2 can always be written using these singular values.
We have analogous results for the case of pseudo-Euclidean space Rp,q of arbitrary finite
dimension n = p + q, in particular, for the case of Minkowski space R1,3. We use
hyperbolic SVD.
This will allow us to obtain all constant solutions of Dirac-Yang-Mills equations.
We can consider nonconstant solutions of the Yang-Mills equations in the form of series of
perturbation theory using all constant solutions as a zeroth approximation. The problem
reduces to solving systems of linear partial differential equations.
We hope that the results can be useful for solving some problems in Particle physics, in
particular, in describing physical vacuum.
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