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Let us consider pseudo-Euclidean space RP9, n = p + g or Euclidean space R" of
arbitrary finite dimension n. We denote Cartesian coordinates by x*, u=1,...,n

and partial derivatives by 9, = 9/0x*.
Let us consider
G =9SU(2) = {S € Mat(2,C)|STS = 1,det S = 1},
g=su(2) = {S € Mat(2,C)|ST = -5, trtS =0},  dimg=3.
Let us consider the Yang-Mills equations
a/LAl/ - auA/L - [A/mAy] = F,ul/a (1)
OuF" —[Au, FH = J7, (2)
where A, : RP9 — g is the potential, J* : RP"9 — g is the non-Abelian current,
Fu = —F,, : RP9 — g is the strength of the Yang-Mills field.
The metric tensor of RP-9 is given by the diagonal matrix
n = ||'rth = HT]MVH = d1ag(1, ey ].7 71, ey *1)
with p ones and g minus ones on the diagonal. We can raise or lower indices of

components of tensor fields using metric tensor, for example, F** = nen"PF, 5.
We may verify that the current (2) satisfies the non-Abelian conservation law

8,0 — [A,, J'] = 0. (3)
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The Yang-Mills equations are gauge invariant w.r.t. the transformations

A,—S*A,S—-519,8S, F. — S7'F.LS, J¥ = S7trS, (4)
where S$=S5(x): R - G.

Particular classes of solutions (monopoles, instantons, merons, etc.):

Wu T.T., Yang C.N. (1968), 't Hooft G. (1974), Polyakov A.M. (1975), Belavin
A.A., Polyakov A.M., Schwartz A.S., Tyupkin Yu.S. (1975), Witten E. (1977),
Atiyah M., Drinfeld V., Hitchin N., Manin Yu. (1978), de Alfaro V., Fubini S.,
Furlan G. (1976), ...

The well-known classes of solutions of the Yang-Mills equations are described in
detail in various reviews:

@ Actor A., Classical solutions of SU(2) Yang-Mills theories, Rev.Mod.Phys. 51(1979).

@ Zhdanov R.Z., Lahno V.I., Symmetry and Exact Solutions of the Maxwell and SU(2)
Yang-Mills Equations, Adv.Chem.Phys. Modern Nonlinear Optics 119 Il (2001).
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Suppose that A* and J* do not depend on x € RP:9. We obtain the following
algebraic system of equations
(A, [A* AY]] = U7, v=1,...,n (5)
We have the following expression for the strength of the Yang-Mills field
Frv = —[A* AY]. (6)

We want to obtain all solutions A* € su(2) of (5) for arbitrary J¥ € su(2).
Constant solutions of the Yang-Mills equations with zero current J* = 0 were
considered in the following papers:

@ Schimming R.: On constant solutions of the Yang-Mills equations. Arch. Math.
24:2, 65-73 (1988).

@ Schimming R., Mundt E.: Constant potential solutions of the Yang-Mills equation.
J. Math. Phys. 33, 4250 (1992).
Note that two dimensional Yang-Mills theory is discussed in

@ Gorsky A., Nekrasov N.: Hamiltonian systems of Calogero type and two dimensional
Yang-Mills theory, Nucl.Phys. B 414, 213-238 (1994).
and other papers. We consider the case n > 2 further for the sake of completeness.
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Let us consider the Pauli matrices 02, a=1,2,3

, (01 o (0 —i ;
Ae(1e) (0 9)

We can take the following basis of the Lie algebra su(2)
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1 g 2 o 3 o
=57 = =—. 8
’ 2i’ g 2i’ T 2] (8)
with (7)1 = —72, tr7? =0, [72,7°] = e*b.7°,

where the structural constants of the Lie algebra su(2) are the antisymmetric
Levi-Civita symbol, €!2> = 1. For the potential and the current, we have

AR = AR R =it AR JER, (9)

Latin indices take values a = 1,2, 3 and Greek indices take values p =1,2,...,n.
Substituting (9) into (5), we get

AL AL A el = v=1,...,n, k=1,2,3. (10)

We obtain 3n equations (k =1,2,3, v =1,2,...,n) for 3n unknown A", and 3n
known J%.. We can consider (10) as a system of equations for elements of two
matrices A,,X3 = ||A%|| and Jpx3 = |||
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Lemma

The system of equations

A A#Aﬁde k—Jk,

v=1,...,

) :172737

is invariant under the following transformations

1) A=A, Sy S,
ie. A= AP, J— JP,
where A, — 571/4;157
S7172S = pir®,

2) A", = qn A, I, = anJh,
ie. A— QA, J— QJ,

" sV
where x* — gbx”.

P =llpsll € SO(3),

J = S71ys,
+S € SU(2) ~ Spin(3),

Q =g/l € O(p, q),

Combining gauge and orthogonal transformations, we conclude that the system is

invariant under the transformation

AU — q JA apb7
i.e. A— QAP,

Jb — qﬂJapb7
J— QJP,
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Theorem (Singular Value Decomposition (SVD))

For an arbitrary real matrix A,«n of the size n x N, there exist orthogonal
matrices Ly, € O(n) and Ryxn € O(N) such that
Loy nAnxNRNxN = Dnxn, (11)

where

Dpxn = diag(pa, - - -, iis), s = min(n, N), 1> pp > > s > 0.

The numbers pg, ..., us are called the singular values, the columns /; of the
matrix L are called the left singular vectors, the columns r; of the matrix R are
called the right singular vectors.

The columns of the matrix L are eigenvectors of the matrix AAT, and the columns
of the matrix R are eigenvectors of the matrix ATA.

The squares of singular values are eigenvalues of the corresponding matrices.
From this fact, it follows that singular values are uniquely determined.
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Theorem (for Euclidean case)

Let A= ||

AL AL A e el = I, v=1,...,n, k=1,2,3. (12)

Then there exist matrices P € SO(3) and Q € O(n) such that QAP is diagonal.
For all such matrices P and Q, the matrix QJP is diagonal too and the system
(12) takes the following form under the transformation A — QAP,J — QJP:

in the case n = 2: — 31(32)2 = Jj1 (13)
—a(a1)? = jo,
in the cases n > 3 : fal((az)z + (33)2) = Ji
—a((a1)? + (a3)%) = o, (14)
—a3((a1)’ + (a2)°) = s

We denote diagonal elements of the matrix QAP by a1, az, a3 (or a1, a2) and
diagonal elements of the matrix QJP by ji, j2, j3 (or j1, j2)-

v
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Suppose we have known matrix J and want to obtain all solutions A of the system
(12). We can always calculate singular values ji, j2, jz of J and solve the system
(14). Finally, we obtain all solutions Ap = diag(ay, a», a3) of the system (12) but
in some other system of coordinates depending on @ € O(n) and with gauge
fixing depending on P € SO(3). The matrix A= Q 'ApP~! will be solution of
the system (12) in the original system of coordinates and with the original gauge
fixing.

Note that Q1 Q; *ApP; 1P, for all @ € O(n) and P; € SO(3) such that
@1JpP1 = Jp, Jp = diag(j1, j2, j3), will be also solutions of the system (12) in the
original system of coordinates and with the original gauge fixing because of
Lemma.

Example. If the matrix J = 0, then all singular values of this matrix equal zero
and we can take Q = P =1 for its SVD. We solve the system (14) for

J1 = j» = j3 = 0 and obtain all solutions Ap = diag(ay, a,, a3) of this system. We
have Q1 JpPy = Jp for Jp =0 and any @Q; € O(n), P1 € SO(3). Therefore, the
matrices Q1 ApP; for all Q; € O(n) and P; € SO(3) will be solutions of the
system (12) because of Lemma.
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The systems (13), (14) can be rewritten in the following way using by := —

n=2: bbd=j, bb?=j, (15)

n>3: bi(bs+b3)=j1, ba(b3+b3)=jo, bs(b?+ b3)=js. (16)

The system (16) has the following symmetry (similarly for (15)): if we change the
sign of some jx, k = 1,2,3, then we must change the sign of the corresponding
bk, k =1,2,3. Using SVD, we can always get nonnegative ji, k = 1,2, 3.
Lemma. The system of equations (15) has the following general solution:

@ in the case j1 = jo = 0, has solutions (b1, 0), (0, by) for all by, by € R;

@ inthecases j1 =0, jo #0; j1 #0, j» =0, has no solutions;
@ in the case j1 # 0, jo # 0, has a unique solution

2 2
b={[2, b=t
J1 J2
Lemma. If the system (16) has a solution (b1, ba, b3), where by # 0, by # 0,

bz # 0, then this system has also a solution (bﬁ % K) where K = (bybybs)3.

Example. Let us take j; = 13, j» =20, j3 = 15. Then ’the system (16) has

solutions (by, by, b3) = (1,2,3) and (63, &%),
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Lemma. The system of equations
bi(b3+b3) =1, ba(b} + b3) =jo, bs(b3 + b3) = J3

has the following general solution:
1) in the case j1 = j» = j3 = 0, has solutions

(b17070)a (07 b2u0)7 and (0707 b3)7 blab2ub3 S Rv

2) in the cases j;1 = j» = 0, j3 # 0 (or similar cases with circular permutation), has
no solutions;
3) in the case j; # 0, j» # 0, j3 = 0 (or similar cases with circular permutation),

has a unique solution
2 2
b1:3J—£’ b2:3-/-ia b3:0v
1 J2

4) in the case j; = j» = j3 # 0, has a unique solution

b= by = by = {2
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5) in the case of not all the same jy, j>, j3 > 0, has two solutions
(bit, bay, b3y), (bi—, bo,b3)
with the following expression for K from the previous lemma
K= bibi_ = by by = byibs_ = (biiboibsy)® = (bi_bp_bs_)5 :
5a) in the case ji = j > j3 > 0 (or similar cases with circular permutation)
s _aEViE-B
J3

3
b1y = boy = 2127 bzt = Zibli; Z+

Moreover, ziz_ =1, K= (-’§3)§

5b) in the case j3 > j; = j» > 0 (or similar cases with circular permutation):

1 -
bi+ = —b3, boy =wybs, b3 =b3= \3/1*1,
w4y S

:si\/sz—4 S:j3+\/1'32+81'12.

" 2 2

Moreover, wiw_ =1, bt =by, K= (J*l)g
s
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5¢) in the case of all different ji, j2, j3 > 0:

3 J3
b)
toy+z4

o yxUn — Jays) okt —4
z4 = . i , Y+ = ;
22— ny+ 2

where to > 2 is the solution (it always exists, moreover, it is bigger than f + i)
of the cubic equation Jiptd — (242 +j2)t2 + 42 = 0.

b1t = boy = yibi4, b3y =zibig,

Moreover, y,y_ =1, z,z. =1 K= (J?)g
0
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Consequences for the strength of the Yang-Mills field.
In the case of the constant potential A" of the Yang-Mills field, we have the
following expression for the strength

Frv = —[A# A" = —[A 72, A% TP = — AR A e 7€ = FIYre, (17)

We take a system of coordinates depending on @ € O(n) and a gauge fixing
depending on P € SO(3) such that the matrices A and J are diagonal.

In the case of dimension n = 2:

(1) InthecaseJ:O,wehaveA:OorA:(8 8 8),36R\{0},F:0.

@ In the case rank(J) = 1, we have no constant solutions.
@ In the case rank(J) = 2, we have a unique solution

2 2
A— ag 0 O ’ 81:—3'1%, 32:34.
0 an 0 n 2

For the strength, we have the following nonzero components of the strength

F2 = —F* = =¥/ j1po7>. (18)
We have the following expression for the invariant:
1
F? = Fu F" = =23/ (i1 (19)
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In the cases of dimension n > 3:

© 00O

In the case rank(J) = 1, we have no constant solutions.

In the case rank(J) = 3, we have one or two solutions.

In the case J = 0, we have nonzero potential A* but zero strength F*” = 0.

In the case rank(J) = 2, we have a unique solution. We have again (18) and
(19), where ji1, j», and jz3 = 0 are singular values of the matrix J.

1) In the case of all the same singular values j := j; = jo = j3 # 0, we have a

unique solution

OO OoOuw

0

O oOoOwn O

0

O v OO

0

F12:—F21:—3ET3 F23:—F32:—3E7_1 F31:
\/4 ) ’

In this case, we have F2 = F,, F*
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2) In the case of not all the same singular values ji, j», j3 of the matrix J, we have
two different solutions

—bix 0 0
0 —by O
| o 0 —bss
A=1 0 o (21)
0 0 0

where biy, k =1,2,3 are from Case (v) of Lemma. We have
FY¥? = —F3' = —b1ibpy7?, FP = —F3* = —bpibsst!,
FE = —FP = —bssbiypr?,

1
F2 = —5(brbas) + (bazbss ) + (bawbrs)’) #0.
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Lemma. In the case of not all the same ji, j», j3, the invariant Fi takes the form:
Q in the case j1 = jo > j3 > 0 (or similar cases with circular permutation):

F2 —K3(1+222)
==

1, F? #F2, (22)

3
2Zj:

. :t .2 _ .2 . 2
where zp = A=VA TS M, K= (%3)5
J3

@ in the case jz > j1 = j» > 0 (or similar cases with circular permutation):
—K?(s%2 - 1)
@:——7—4, F?=F2
. /.2 8 .2
Where s = ‘w > 2,
21
@ in the case of all different ji, j>, j3 > 0:

(23)

_ (i
K=(7)%

_K2(y2 2 2 2
Fi: (.y:i:+z:|:ty:|:z:|:)1, Fi#sz (24)
2(y+zs)s

where K = (JtT,)% and yy, z4, to are from Case 5¢) of previous Lemma.
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Theorem (HSVD)

For arbitrary matrix Apxn € Mat(R), there exist matrices R € O(N) and
L € O(p, q) such that

X 0 0 0
0 0 Iy 0
0 0 0 0

T _5A A _

LTAR = T4, = Y, 0 0 € Mat,xn(R), (25)
0 0 Iy 0
0 0 0 0

where the first block of the matrix ¥” has p rows and the second block has q
rows, Xy and Y, are diagonal matrices of the corresponding sizes x and y with all
positive uniquely determined diagonal elements, 1, is the identity matrix of size d.
Here we have

d = rank(A) — rank(ATnA), x +y = rank(ATnA),

X is the number of positive eigenvalues of the matrix ATnA, y is the number of
negative eigenvalues of the matrix ATnA.

4
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Theorem. Let A = [|A% ||, J = ||J% ]| satisfy the system of 3n cubic equations

AucALAY, e e = J4, v=1,...,n, k=1,2,3. (26)

Then: 1) There exist matrices P € SO(3) and Q € O(p, q) such that the matrix QAP is in the
canonical form (with parameters xa, ya, da)

Xxa 0 0 0
0 0 lg, O
0 0 0 0
A _ _
Y= QAP = 0 Yy 0 0
0 0 lg, O
0 0 0 0
For all such matrices P and Q, the matrix QJP has the following form
Zy, 0 0 0
0 0 aly, 0
0 0 0 0
QP = 0 Wy, 0 0 ’
0 0 aly, 0
0 0 0 0

where elements of the diagonal matrices Z and W are real numbers (can be zero), a € R (can
be zero).
2) For parameters of the matrices A and J, we have:

x; < Xa, s < ya, dyj=da>0 or d;=0,da>0.
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3) There exist matrices P € SO(3) and Q € O(p, q) such that the matrix QJP is in the
canonical form (with parameters x;, y,, d;)

X, 0 0 0
0 0 Iy O
0 0 0 0
J_ _

Y=QP= 0 Yy, 0 0 |’

0 0 Iy O

0 0 0 0

and QAP has the following form
Kqg 0 0 0 0 0 0
0 0 Bld, 0 0 0 0
0 0 0 Ly O 0 0
0 0 0 0 0 0 lgy—d,
0 0 0 0 0 0 0
QAP =1—%—m, o 0 0 0 o0 ’

0 0 Bla, 0 0 0 0
0 0 0 0 Ny, 0 0
0 o 0 0 0 0 lyyd,
0 0 0 0 0 0

where 8 € R\ {0}; elements of the diagonal matrices K, L, M, N are arbitrary nonzero real

numbers.

Dmitry Shirokov (dm.shirokov@gmail.com) Akademgorodok, 2021 20/24



Summary for the case RV

Ly [0 [y ][ da]xa[yal A | F [ 7 ]
0 1 1 0 1 1 1: see (27) | 1: see (28) | 1: see (29)
o170 8 8 8
0|01 8 8 8
o[o0ofo o[o] o A=0 F=0 FZ=0
0 | 1 | 0 | co: see(30) F=0 F2=0
0| o0 1 | oo: see (31) F=0 F2=0
1 | 0 | 0 | 1: see(32) F=0 F2=0
100 8 8 8
A (2 0 O = 2 [i 0= _ 3 Ji
S\ 0 a 0)’ TV 2T 2
F12 = _p21 _ 3/j5r3
1
2 __ pr = 3[c: s N2
Fe=FuF* = 5V (1j2)%12 # 0.
a 0 O
A:(0100>, a1 € R\ {0}.
0 0 0
A—(al 0 0), a1 € R\ {0}.
1 0 0
A*<1 0 0)‘
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Summary for the case RP9, p+ g > 2:

[ P, q [ d_/[ X_][ yJ[ add.cond. “ dA[ XA[ yA[ A [ F [ F2
p>3,g>1 o[ 3]0 1=j2=J3 0O 3] 0] 1. 1:.. 1:..
p>3,gq>1 |0 3|0 h=j2>]3 0| 3| 0] 2.. 2:.. 2:..
p>3,gq>1 | 0| 3|0 3> =2 0| 3| 0| 2.. 2:.. 1.
p>3,q>1| 0| 3|0 all different ji, jo, jz 0| 3| 0] 2. 2:.. 2:..
p>1lqg>3 0| 0] 3 i=j2=]3 0| 0| 3] 1. 1:.. 1.
p>1,9g>3 | 0| 0] 3 1=42>]3 00| 3] 2. 2:.. 2:..
p>1,qg>3 | 0| 0] 3 Jj3>j=J2 0| 0| 3| 2.. 2:.. 1:..
p>1,qg>3 | 0| 0] 3 all different jy, j2, ja 0O 0| 3| 2. 2:.. 2:...
p>2,q>1 0|21 j1:j2<2{% 0| 2| 1] 6:.. 6:.. 4o0r3:...
p>2,qg>1 0] 2|1 j1:j2:21% 0| 2| 1| 4.. 4:.. F?=0and 2:...
p>2,qg>1 0] 2|1 j1:j22>212% R 0| 2| 1| 2.. 2:.. 2:..
p>2,g>1 | 0| 2| 1| p#j 2 >j2+j2 ||[0]|2]1]6...]6.. 3-6:...

2 2 2
p>2,g>1 | 0| 2| 1| ju#jj3=j2+j 02| 1] 4.. 4:.. F?=0and 3:...
2 2 2
p>2,g>1 | 0| 2| 1| ja#jjs <jz +id 02| 1] 2. 2. 2:. ..
p>1l,g>2 | 0| 1|2 j;:j1<2% 0| 1| 2] 6:.. 6:.. 4or3:...
p>1l,g>2 0| 1] 2 j3:j1:2{% 0O 1| 2| 4.. 4:. . F2=0and2:...
p>1l,gq>2 | 0| 1] 2 j3:J:>212% R 0| 1] 2| 2.. 2:.. 2:..
p>1,g>2 | 0| 1| 2] js ;éjl,jf >j3§ +j2 o 1]2]6...]6.. 3-6:...
2
p>1l,g>2 0o 1] 2 j37éj1,j2 —_j3 +j3 O 1| 2| 4.. 4:.. F?=0and 3:...
E
p>1,g>2 | 0| 1] 2 j;;éjl,jz <_j3 +j3 0 1| 2] 2. 2. 2:.
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@ We obtain all constant solutions of SU(2) Yang-Mills equations in R” for arbitrary current.

@ We prove that the number (0, 1, or 2) of solutions in terms of the strength F depends on
the singular values of the matrix J. The explicit form of these solutions and the invariant
F2 can always be written using these singular values.

@ We have analogous results for the case of pseudo-Euclidean space RP>9 of arbitrary finite
dimension n = p + q, in particular, for the case of Minkowski space R1:3. We use
hyperbolic SVD.

@ This will allow us to obtain all constant solutions of Dirac-Yang-Mills equations.

@ We can consider nonconstant solutions of the Yang-Mills equations in the form of series of
perturbation theory using all constant solutions as a zeroth approximation. The problem
reduces to solving systems of linear partial differential equations.

@ We hope that the results can be useful for solving some problems in Particle physics, in
particular, in describing physical vacuum.
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Thank you for your attention!
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