Choking under pressure in relay races

Nikolai Avkhimovich
13 July, 2021, EURO Conference

Roberto Baggio misses decisive shoot-out during

 1994 FIFA World Cup

1993 Wimbledon

 Championship```
Steffi Graf 711 (15)
Jana Novotna 6(0)
```

Steffi Graf $\quad \begin{array}{lll}7 & 1 & 6\end{array}$ Jana Novotna

664


## Literature review

Yerkes-Dodson law (1908): performance increases with (mental) arousal, but only up to a point; beyond this threshold, performance declines

Baumeister (1984): defined "choking under pressure": the performance decrement happens as a result of "increased attention to one's own performance", which is typical reaction of agents being under pressure

Ariely (2009): through set of experiments concluded, that "high reward levels can have detrimental effects on performance; Sanders and Walia (2012): observed "shirking under pressure" effect, when higher stakes could lead to lower performance level in the presence of pressure

Economics (sport economics): finding evidence, quantifying, etc.

## Friendly environment pressure:

- Soccer penalty shoot-outs (Dohmen (2008)), biathlon shooting stage (Harb-Wu \& Krumer (2019)), basketball (Boheim (2019))


## "Follower" pressure:

- Soccer penalties (Echenique \& Rodriguez (2017)) vs. tennis tiebreak (Cohen-Zada (2018))


## Decisive moments pressure:

- Cao et al. (2011): being at final stage of a very close basketball game decreases shooting accuracy by 5-10\%
- Hickman et al. (2019), Teeselink et al. (2020): evidence of performance decrements in decisive moments in darts, golf

Psychology: Why does choking happen? How to resolve it?

Choking mechanism and interventions:

- Hill et al. (2010), Gropel \& Mesagno (2019): primary mechanisms of choking and specific interventions (distraction based, self-focus based, mindfulness intervention, etc.) to prevent performance decrement under pressure in sport



## Agenda

Computer simulations

## Model setup and "normal conditions" case

## Model setup

$2 \times 2$ relay race

- Team A: A1, A2, Team B: B1, B2

Players with differentiated skills:

- Ranking: A1 $\geq \mathrm{B} 1 \geq \mathrm{B} 2 \geq \mathrm{A} 2$
- Meaning $\mathrm{t}^{\star}(\mathrm{A} 1) \leq \mathrm{t}^{\star}(\mathrm{B} 1) \leq \mathrm{t}^{\star}(\mathrm{B} 2) \leq \mathrm{t}^{\star}(\mathrm{A} 2)$, where $\mathrm{t}^{*}$ is time of the lap in "normal conditions" ${ }^{1}$

Coaches choose sequence of players (e.g. $\mathrm{A} 1 \rightarrow \mathrm{~A} 2$ or $\mathrm{A} 2 \rightarrow \mathrm{~A} 1$ )

## Lemma 0: Coaches are indifferent of sequence of their players

 under "normal conditions"Individual sportsmen time of the lap is predetermined by his / her ranking and would be the same regardless the order in race

$$
T_{A 1 \rightarrow A 2}=t_{A 1}+t_{A 2}=\frac{\bar{S}}{\overline{v_{A 1}}}+\frac{\bar{S}}{\overline{v_{A 2}}} \Theta T_{A 2 \rightarrow A 1}=t_{A 2}+t_{A 1}=\frac{\bar{s}}{\overline{A_{A 2}}}+\frac{\bar{S}}{\overline{v_{A 1}}}
$$



## "Choking" function

## Baumeister (1984) directionally suggested the form of choking function

- If one is far ahead, one can afford some errors without losing; pressure is minimal
- If one has only a slight lead, the pressure is increased, although an occasional or minor error will keep the contest still undecided
- Pressure would seem to be greatest if one is slightly to moderately behind. In that situation, one retains the possibility of success only if one performs very well; any further mistakes or setbacks may end one's chance of winning
- If one is far behind, pressure is presumably diminished


## Two symmetric "choking" functions are introduced and considered in the paper

- "Choking": negative effect on momentum speed in decisive moments (when the competitor is close)

II) Symmetric parabola


[^0]
## Scenario 1: Team A is stronger

Simplified model ${ }^{1}$


## Lemma 1a:

- Coach would prefer A1 $\rightarrow$ A2
- Faster to start, slower to finish

Proof (in a nutshell):

- $\mathrm{T}(\mathrm{A} 1 \rightarrow \mathrm{~A} 2)<\mathrm{T}(\mathrm{A} 2 \rightarrow \mathrm{~A} 1)$
- $\bar{\delta}_{1}-\bar{\delta}_{3}<\bar{\delta}_{2}-\bar{\delta}_{4}$
- $\delta_{1}-\delta_{3}<0$ (overtaking)
- $\delta_{2}-\delta_{4}>0$ (no overtaking)


## Scenario 1 [Proof]: Team A is stronger

Simplified model ${ }^{1}$

$$
\begin{aligned}
T_{A 1 \rightarrow A 2} & <T_{A 2 \rightarrow A 1} \\
\frac{\delta_{1}}{v+\Theta_{1}-u}+\frac{S-\delta_{1}}{v+\Theta_{1}}+\frac{S-\delta_{4}}{v-\Theta_{2}}+\frac{\delta_{4}}{v-\Theta_{2}-u} & <\frac{\delta_{2}}{v-\Theta_{2}-u}+\frac{S-\delta_{2}}{v-\Theta_{2}}+\frac{S-\delta_{3}}{v+\Theta_{1}}+\frac{\delta_{3}}{v+\Theta_{1}-u} \\
\frac{\delta_{1}-\delta_{3}}{v+\Theta_{1}-u}+\frac{S-\delta_{1}-\left(S-\delta_{3}\right)}{v+\Theta_{1}} & <\frac{\delta_{2}-\delta_{4}}{v-\Theta_{2}-u}+\frac{S-\delta_{2}-\left(S-\delta_{4}\right)}{v-\Theta_{2}} \\
\frac{\delta_{1}-\delta_{3}}{v+\Theta_{1}-u}-\frac{\delta_{1}-\delta_{3}}{v+\Theta_{1}} & <\frac{\delta_{2}-\delta_{4}}{v-\Theta_{2}-u}-\frac{\delta_{2}-\delta_{4}}{v-\Theta_{2}} \\
\left(\delta_{1}-\delta_{3}\right) \frac{v+\Theta_{1}-\left(v+\Theta_{1}-u\right)}{\left(v+\Theta_{1}-u\right)\left(v+\Theta_{1}\right)} & <\left(\delta_{2}-\delta_{4}\right) \frac{v-\Theta_{2}-\left(v-\Theta_{2}-u\right)}{\left(v-\Theta_{2}-u\right)\left(v-\Theta_{2}\right)} \\
\frac{u\left(\delta_{1}-\delta_{3}\right)}{\left(v+\Theta_{1}-u\right)\left(v+\Theta_{1}\right)} & <\frac{u\left(\delta_{2}-\delta_{4}\right)}{\left(v-\Theta_{2}-u\right)\left(v-\Theta_{2}\right)}
\end{aligned}
$$

Since $u>0, v+\Theta_{1}>u$ and $v-\Theta_{2}-u>0$ :

$$
\delta_{1}-\delta_{3}<\delta_{2}-\delta_{4}
$$

## Scenario 2: Team A is weaker

Simplified model ${ }^{1}$

Simplified "choking function" for Team A only with negative effect " $u$ "
$\mathrm{V}(\mathrm{A} 1)=\mathrm{v}+$ theta 1 $V(A 2)=v-$ theta2 $V(B 1)=V(B 2)=v$

Theta1 > u
"Loosing condition" on theta1, theta2, $u$



Proof (in a nutshell):

- $\mathrm{T}(\mathrm{A} 1 \rightarrow \mathrm{~A} 2)>\mathrm{T}(\mathrm{A} 2 \rightarrow \mathrm{~A} 1)$
- $\delta_{1}-\delta_{3}>\delta_{2}-\delta_{4}$
- $\delta_{1}-\delta_{3}>0$ (no overtaking)
- $\delta_{2}-\delta_{4}<0$ (overtaking)


## Agenda

## Theoretical modelling

Computer simulations

## Computer simulations setup

## Main input

Speed in "normal conditions"

- $\mathrm{v}(\mathrm{A} 1), \mathrm{v}(\mathrm{A} 2), \mathrm{v}(\mathrm{B} 1), \mathrm{v}(\mathrm{B} 2)$
"Choking" function form:
- Quadratic function

Normal distribution of "choking" value

- Mean: "Choking" function value

Number of simulations

## Modelling approach

1) At time 0 first sportsmen from both teams starts the race (initially distance between them is equal to 0 )
2) "Choking" function is calculated for specific distance between sportsmen for both of them
3) Negative impact on sportsmen speed is randomly realized
4) Momentum speed for both sportsmen is determined
5) Sportsmen "move", setting new distance between sportsmen
6) Return to step (2)

## Computer simulations results

## $B 1 \rightarrow B 2, v(B 1)=v(B 2)^{1}$

Computer simulations are in line with theoretical results, however...




Based on 100000 simulations:

Average time decreases in line with model:

- $\mathrm{A} 1 \rightarrow \mathrm{~A} 2: 687.0 \mathrm{~s}$
- $\mathrm{A} 2 \rightarrow \mathrm{~A} 1: 685.9 \mathrm{~s}$

However, distance under "choking" effect for Team B varies

Probability of winning:

- A1 $\rightarrow$ A2: $14 \%$
- $A 2 \rightarrow A 1: 9 \%$


## Best response (1/3)

$B 1 \rightarrow B 2, v(B 1)=v(B 2)^{1}$


Team A coach would prefer faster to start, slower to finish (A1 $\rightarrow \mathrm{A} 2$, if $\mathrm{v}(\mathrm{A} 1)>\mathrm{v}(\mathrm{A} 2)$ )

## Best response (2/3)

$B 1 \rightarrow B 2, v(B 1)<v(B 2)^{1}$


With lower probability of winning: Team $A$ coach would prefer slower to start, faster to finish $(A 2 \rightarrow A 1$, if $v(A 1)>v(A 2))$
With higher probability of winning: Team $A$ coach would prefer faster to start, slower to finish $(A 1 \rightarrow A 2$, if $v(A 1)>v(A 2))$

## Best response (2/3) - deep dive for particular speed $v(A 1)=3.1$

$B 1 \rightarrow B 2, v(B 1)<v(B 2)^{1}$

$$
-\mathrm{A} 1 \rightarrow \mathrm{~A} 2-\mathrm{A} 2 \rightarrow \mathrm{~A} 1
$$

Probability of winning, percent


[^1]
## Best response (3/3)

$B 1 \rightarrow B 2, v(B 1)>v(B 2)^{1}$


With lower probability of winning: Team $A$ coach would prefer faster to start, slower to finish ( $A 1 \rightarrow A 2$, if $v(A 1)>v(A 2))$
With higher probability of winning: Team $A$ coach would prefer slower to start, faster to finish $(A 2 \rightarrow A 1$, if $v(A 1)>v(A 2))$

## Conclusions and next steps

## Conclusions

## Theoretical modelling:

$B 1 \rightarrow B 2, v(B 1)=v(B 2)$
Team A is weaker: slower to start, faster to finish
Team A is stronger: faster to start, slower to finish

## Computer simulations:

$B 1 \rightarrow B 2, v(B 1)<v(B 2)$
With lower probability of winning: slower to start, faster to finish
With higher probability of winning: faster to start, slower to finish

B1 $\rightarrow$ B2, $\mathbf{v}(\mathrm{B} 1)>\mathrm{v}(\mathrm{B} 2)$
With lower probability of winning: faster to start, slower to finish With higher probability of winning: slower to start, faster to finish

## Opportunities for further research

Deep dive into border probabilities of winning:

- $50 \%$ ?

Functional form of "choking" function:

- Other specifications (incl. asymmetric)

Differentiated "choking" function impact:

- E.g. strong players "choke" less

Simultaneous game and limited information case:

- Team A does not know Team B "choking function"


## Nikolai Avkhimovich

13 July, 2021, EURO conference


[^0]:    Potential for future research: functional form of "choking" function (incl. asymmetric to account for Baumeister's (1984) effects)

[^1]:    With lower probability of winning: Team $A$ coach would prefer slower to start, faster to finish $(A 2 \rightarrow A 1$, if $v(A 1)>v(A 2))$
    With higher probability of winning: Team $A$ coach would prefer faster to start, slower to finish $(A 1 \rightarrow A 2$, if $v(A 1)>v(A 2))$

