Крестовая аппроксимация тензоров и алгебры Клиффорда

Семинар "Алгебры Клиффорда и приложения" 06.04.2024

Катя Филимошина

Agenda

1. Skeleton decomposition and CUR approximation of matrices
2. Tensors: Basic Definitions

Problem of choosing tubes for CUR approximation
Existing approaches
Proposed solution: Clifford scores for CUR using SVD
7. Implementation

8
Experiments on image completion task

Skeleton decomposition and CUR approximation of matrices

Skeleton decomposition for matrices

Theorem 1.1 (Skeleton decomposition). Suppose $A \in \mathbb{R}^{n \times m}, \operatorname{rank}(A)=r$. It can be written in a form

$$
\begin{equation*}
A=C U^{-1} R \tag{1.1}
\end{equation*}
$$

where $C \in \mathbb{R}^{n \times r}, U^{-1} \in \mathbb{R}^{r \times r}$, and $R \in \mathbb{R}^{r \times m}$.

Skeleton decomposition for matrices

Remark 1.2. Skeleton decomposition has another form:

$$
\begin{equation*}
A=X Y, \quad X \in \mathbb{R}^{n \times r}, \quad Y \in \mathbb{R}^{r \times m} \tag{1.2}
\end{equation*}
$$

where U, V can be chosen, for example, as

$$
\begin{equation*}
X=C U^{-1}, \quad Y=R \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
X=C, \quad Y=U^{-1} R . \tag{1.4}
\end{equation*}
$$

Skeleton decomposition for matrices

Remark 1.3 (Existance). Skeleton decomposition exists for any $A \in \mathbb{R}^{n \times m}$.

Remark 1.4 (Uniqueness). Skeleton decomposition is not unique (except the case $n=m=r)$:

1. We can choose any r linearly independent rows and columns for $A=C U^{-1} R$.
2. $A=U V=(U S)\left(S^{-1} V\right)=U^{\prime} V^{\prime}$ for any $S: \operatorname{det}(S) \neq 0$.

Skeleton decomposition for matrices

Remark 1.5 (Use Cases). Main applications of Skeleton decomposition:

- Data storage and compression: Consider a matrix $A \in \mathbb{R}^{n \times m}$. Instead of storing $n m$ parameters, we can decompose it as $A=U V$ and store $n r+r m=(n+m) r$ parameters. It is useful when $r<\frac{n m}{n+m}$.
- Fast computation of matvec: To compute a matrix-vector product $A x$ of $A \in \mathbb{R}^{n \times m}$ and $x \in \mathbb{R}^{m \times 1}$, we need to perform $O(m n)$ operations. Using $A=U V$, we need to compute $U(V x)$, which takes $O(m r)$ operations for $V x$ and then $O(n r)$ operations for $U(V x)$.

CUR approximation of matrices

(Крестовая

 аппроксимация)Select R1 columns and R2 rows of A.
If R1 = R2 = rank(A), then we get exact Skeleton decomposition.
If R1 and R2 do not form a basis of column space and row space of A respectively, then the decomposition is not exact. It is called CUR approximation.

CUR approximation of matrices

CUR matrix approximation is used for low-rank matrix approximation.
CUR approximation is more representative of the data than the orthonormal singular vectors.

Tensors: Basic Definitions

Tensors

Definition. We call a tensor of order k a multi-dimensional matrix

$$
\begin{equation*}
A \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{k}} \tag{2.1}
\end{equation*}
$$

Examples of tensors:

Tensors: More examples

Images

EEG signals

Fibers and Slices

Fibers (tubes) of a 3rd order tensor:

Columns (mode 1)

Tubes (mode 3)

Slices of a 3rd order tensor:

Horizontal slices

Vertical slices

Frontal slices

Tensor Unfoldings

Definition. Mode- n unfolding of a tensor $A \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ is an operation $\mathbb{R}^{I_{1} \times \cdots \times I_{N}} \rightarrow \mathbb{R}^{I_{n} \times\left(\Pi_{j \neq n} I_{j}\right)}$ that horizontally concatenates all tubes of A along mode n.

Unfoldings of a 3rd order tensor:

Tensor Unfoldings

Definition. Mode- n unfolding of a tensor $A \in \mathbb{R}^{I_{1} \times \cdots \times I_{N}}$ is an operation $\mathbb{R}^{I_{1} \times \cdots \times I_{N}} \rightarrow \mathbb{R}^{I_{n} \times\left(\Pi_{j \neq n} I_{j}\right)}$ that horizontally concatenates all tubes of A along mode n.

Inverse operation to unfolding is called folding.

Tensor-matrix product

Definition. Consider a tensor $G \in \mathbb{R}^{I_{1} \times \cdots \times I_{k} \times \cdots \times I_{N}}$ and a matrix $A \in \mathbb{R}^{J \times I_{k}}$. Mode- k tensor-matrix product $\mathbb{R}^{I_{1} \cdots \times I_{k} \times \cdots I_{N}} \times \mathbb{R}^{J \times I_{k}} \rightarrow \mathbb{R}^{I_{1} \cdots \times J \times \cdots I_{N}}$ of G and A is denoted by

$$
\begin{equation*}
Y=G \times_{k} A \tag{2.7}
\end{equation*}
$$

and defined as

$$
\begin{equation*}
Y_{(k)}=A G_{(k)} \tag{2.8}
\end{equation*}
$$

So, to calculate mode-k tensor-matrix product of G and A, we should find unfolding $G_{(k)}$, compute matrix product $A G_{(k)} \in \mathbb{R}^{J \times\left(\Pi_{l \neq k} I_{l}\right)}$, and make folding back.

Tensor-matrix product

Definition. Consider a tensor $G \in \mathbb{R}^{I_{1} \times \cdots \times I_{k} \times \cdots \times I_{N}}$ and a matrix $A \in \mathbb{R}^{J \times I_{k}}$. Mode- k tensor-matrix product $\mathbb{R}^{I_{1} \cdots \times I_{k} \times \cdots I_{N}} \times \mathbb{R}^{J \times I_{k}} \rightarrow \mathbb{R}^{I_{1} \cdots \times J \times \cdots I_{N}}$ of G and A is denoted by

$$
Y=G \times_{k} A
$$

and defined as

$$
Y_{(k)}=A G_{(k)}
$$

So, to calculate mode-k tensor-matrix product of G and A, we should find unfolding $G_{(k)}$, compute matrix product $A G_{(k)} \in \mathbb{R}^{J \times\left(\Pi_{l \neq k} I_{l}\right)}$, and make folding back.

03

Skeleton decomposition and CUR approximation of tensors

CUR of tensors:

3 types

3. Slice/Slice selection

3koltech

CUR of tensors

1. Tubes selection

CUR of tensors

We can get an approximation of the initial tensor X as the tensor-matrix product of the three matrices C, T, R and a core tensor U :

$$
\begin{equation*}
X \approx U \times_{1} C \times_{2} R \times_{3} T . \tag{2.9}
\end{equation*}
$$

This product can be also denoted as

$$
\begin{equation*}
X \approx \llbracket U ; C, R, T \rrbracket . \tag{2.10}
\end{equation*}
$$

Skeleton decomposition for tensors

Theorem 2.1. Suppose we know that a tensor $Y \in \mathbb{R}^{I \times J \times K}$ can be exactly represeneted as

$$
\begin{equation*}
Y=\llbracket G ; A_{1}, A_{2}, A_{3} \rrbracket, \tag{2.11}
\end{equation*}
$$

i.e. there exist a tensor $G \in \mathbb{R}^{R_{1} \times R_{2} \times R_{3}}$ and matrices $A_{1} \in \mathbb{R}^{I \times R_{1}}, A_{2} \in$ $\mathbb{R}^{J \times R_{2}}$, and $A_{3} \in \mathbb{R}^{K \times R_{3}}$. Then

1. There exist such subsets for each dimension

$$
\begin{equation*}
\mathcal{I}=\left\{i_{1}, \ldots, i_{P_{1}}\right\}, \quad \mathcal{J}=\left\{j_{1}, \ldots, j_{P_{2}}\right\}, \quad \mathcal{K}=\left\{k_{1}, \ldots, k_{P_{3}}\right\}, \tag{2.12}
\end{equation*}
$$

($P_{1} \geq R_{1}, P_{2} \geq R_{2}, P_{3} \geq R_{3}$), that the unfolding matrices of the intersection subtensor $W=Y(\mathcal{I}, \mathcal{J}, \mathcal{K})$ have ranks R_{1}, R_{2}, and R_{3} respectively:

$$
\begin{equation*}
\operatorname{rank}\left(W_{(1)}\right)=R_{1}, \quad \operatorname{rank}\left(W_{(2)}\right)=R_{2}, \quad \operatorname{rank}\left(W_{(3)}\right)=R_{3} . \tag{2.13}
\end{equation*}
$$

2. The following exact decomposition can be obtained:

$$
\begin{equation*}
Y=\llbracket U ; C_{1}, C_{2}, C_{3} \rrbracket, \quad \text { with } \quad U=\llbracket W ; W_{(1)}^{\dagger}, W_{(2)}^{\dagger}, W_{(3)}^{\dagger} \rrbracket, \tag{2.14}
\end{equation*}
$$

Generalizing the column-row matrix decomposition to multi-way arrays

Cesar F. Caiafa ${ }^{*, 1}$, Andrzej Cichocki ${ }^{2,3}$
LABSP, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan

FSTD algorithm

where matrices $C_{1} \in \mathbb{R}^{I \times P_{2} P_{3}}, C_{2} \in \mathbb{R}^{J \times P_{1} P_{3}}$, and $C_{3} \in \mathbb{R}^{K \times P_{1} P_{2}}$ are defined as

$$
\begin{equation*}
C_{1}=Y_{(1)}(:, \mathcal{J} \times \mathcal{K}), \quad C_{2}=Y_{(2)}(:, \mathcal{I} \times \mathcal{K}), \quad C_{3}=Y_{(3)}(:, \mathcal{I} \times \mathcal{J}) . \tag{2.15}
\end{equation*}
$$

Applications of CUR for tensors

CUR can be used in applications where the low-rank tensor approximation is required:

Tensor data compression

To reduce number of parameters of a tensor with a given approximation error.

02. Tensor Completion

To estimate missing or uncertain elements of a tensor (for image inpainting, video completion, time series completion, etc.)

Cross Tensor Approximation Methods for Compression and Dimensionality Reduction

SALMAN AHMADI-ASL ${ }^{\bullet}$, CESAR F. CAIAFA ${ }^{\oplus 2}$, ANDRZEJ CICHOCKI ${ }^{-1,3}$ (Life Fellow, IEEE), ANH HUY PHAN ${ }^{\circledR 1}$, (Member, IEEE), TOSHIHISA TANAKA ${ }^{\oplus}{ }^{4}$, (Senior Member, IEEE), IVAN OSELEDETS ${ }^{1}$, AND JUN WANG ${ }^{1}$
${ }^{\text {C }}$ CDISE, Skolkovo Institute of Science and Technology (SKOLTECH), 121205 Moscow, Russia
${ }^{2}$ Instituto Argentino de Radioastronomía-CCT La Plata, CONICET/CIC-PBA/UNLP, Villa Elisa 1894, Argentina ${ }^{3}$ RIKEN Center for Advanced Intelligence Project (AIP), Tokyo 103-0027, Japan
${ }^{4}$ Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan

03. Denoising

To denoise a data tensor.

Problem of CUR approximation

Problem and its relevance

Approximation accuracy of CUR approximation for matrices / tensors significantly depends on chosen rows and columns / tubes and slices.

How to Find a Good Submatrix ${ }^{\star}$

S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and

> N. L. Zamarashkin

Institute of Numerical Mathematics of Russian Academy of Sciences, Gubkina 8, 119333 Moscow, Russia
\{sergei, ivan, draug, tee, kolya\}@bach.inm.ras.ru

Generalizing the column-row matrix decomposition to multi-way arrays

LABSP, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan

- Column pivoted QR factorizations [Stewart 1999], [Voronin and Martinsson 2015] cf. Rank Revealing QR factorizations [Gu, Eisenstat 1996]
- Volume optimization [Goreinov, Tyrtyshnikov, Zamarashkin 1997], ... , [Goreinov, Oseledets, Savostyanov, Tyrtyshnikov, Zamarashkin 2010], [Thurau, Kersting, Bauckhage 2012]
- Uniform sampling of columns e.g., [Chiu, Demanet 2012]
- Leverage scores (norms of rows of singular vector matrices)
[Drineas, Mahoney, Muthukrishnan 2008], [Mahoney, Drineas 2009], ..., [Boutsidis, Woodruff 2014]
- Empirical Interpolation approaches [Sorensen \& E.], Q-DEIM method of [Drmač, Gugercin 2015]

Existing approaches

Some of the existing solutions for rows/columns choice

Uniform distribution sampling

$$
\begin{aligned}
p_{j} & =\frac{1}{J}, j=1,2, \ldots, J \\
p_{i} & =\frac{1}{I}, i=1,2, \ldots, I
\end{aligned}
$$

Length-squared distribution sampling

$$
\begin{gathered}
p_{j}=\frac{\|\mathbf{A}(:, j)\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}, j=1,2, \ldots, J \\
p_{i}=\frac{\|\mathbf{A}(i,:)\|_{2}^{2}}{\|\mathbf{A}\|_{F}^{2}}, i=1,2, \ldots, I
\end{gathered}
$$

Leverage scores sampling

Suppose we have $\mathbf{A}=\mathbf{U S V}^{T}, \mathbf{U} \in \mathbb{R}^{I \times R}$ and $\mathbf{V} \in \mathbb{R}^{J \times R}$.
To rank the importance of the rows, take the 2-norm of each
row of \mathbf{U} :
Row leverage score $=l_{R, i}=\|\mathbf{U}(i,:)\|_{2}^{2}$

$$
p_{i}=\frac{l_{R, i}}{R}, i=1,2, \ldots, I
$$

Column leverage score $=\hat{l}_{R, j}=\|\mathbf{V}(j,:)\|_{2}^{2}$

Discrete Empirical Interpolation Method (DEIM)

D. C. Sorensen, M. Embree. A DEIM Induced CUR Factorization.
https://arxiv.org/abs/1407.5516

Volume optimization,

 Cross 2D
Some of the existing solutions for tubes choice

Uniform distribution sampling

$$
\begin{aligned}
p_{j} & =\frac{1}{J}, j=1,2, \ldots, J \\
p_{i} & =\frac{1}{I}, i=1,2, \ldots, I
\end{aligned}
$$

Length-squared distribution sampling

$$
\begin{aligned}
p_{i} & =\frac{\left\|\underline{\mathbf{X}}\left(:,:, i_{3}\right)\right\|_{F}^{2}}{\|\underline{\mathbf{X}}\|_{F}^{2}}, i_{3}=1,2, \ldots, I_{3}, \\
q_{j} & =\frac{\underline{\mathbf{X}}\left(j_{1}, j_{2},:\right)}{\|\underline{\mathbf{X}}\|_{F}^{2}}, \quad j_{1}, j_{2} \in J_{1}, J_{2}
\end{aligned}
$$

Michel Mahoney et.al, Tensor-CUR decompositions for tensor-based data, SIAM Journal on Matrix Analysis and Applications, 2008.

Cross 3D

I. V. OSELEDETS, D. V. SAVOSTIANOV, AND E. E. TYRTYSHNIKOV. TUCKER DIMENSIONALITY REDUCTION OF
THREE-DIMENSIONAL ARRAYS IN LINEAR TIME, 2008

Adaptive algorithm

Cesar F. Caiafa, Andrzej Cichocki,
Generalizing the column-row matrix
decomposition to multi-way arrays,
Linear Algebra and its Applications, 2010

06

Proposed solution: Clifford scores for tensors CUR

Images and Quaternions

Image as a tensor with coefficients in \mathbb{R}

$$
\in \mathbb{R}^{I_{1} \times I_{2} \times 3}
$$

Images and Quaternions

Image as a tensor with coefficients in \mathbb{R}

Image as a matrix with coefficients in $\mathbb{H} \cong C \ell_{0,2}(\mathbb{R})$

$$
\in \mathbb{R}^{I_{1} \times I_{2} \times 3}
$$

$$
q_{11}=a_{11} i+b_{11} j+c_{11} k
$$

$$
\in \mathbb{H}^{I_{1} \times I_{2}}
$$

Tensors as Clifford algebra matrices

Tensor with coefficients in \mathbb{R}

$$
\in \mathbb{R}^{I_{1} \times I_{2} \times N}
$$

Matrix with coefficients in $C \ell_{p, q}(\mathbb{R})$

Tensors as Clifford algebra matrices

For which tasks it might be useful to apply such an approach?

The most natural applications:

- Images: select basis element of $C \ell_{p, q}$ for each channel.
- Data with coordinates of some points or vectors.

Example:

$$
\mathbb{R}^{\text {num. of tethraedra } \times 3 \times 3}
$$

Proposed solution: Clifford Scores for CUR

1. Tensor in $\mathbb{R}^{I_{1} \times I_{2} \times N} \quad \mapsto \quad$ Matrix in $\left[C \ell_{p, q}(\mathbb{R})\right]^{I_{1} \times I_{2}}$

Proposed solution: Clifford Scores for CUR

2. SVD of the matrix in $\left[C \ell_{p, q}(\mathbb{R})\right]^{I_{1} \times I_{2}}$

$$
\begin{array}{ll}
q_{11}=b_{11} e_{1}+c_{11} e_{2}+\cdots \\
& \mapsto
\end{array}
$$

SVD for Quaternion Matrices

Quaternion Singular Value Decomposition based on
Bidiagonalization to a Real Matrix using Quaternion Householder
Transformations.
S. J. Sangwine ${ }^{\dagger \S} \quad$ N. Le Bihan ${ }^{\ddagger}$

October 16, 2018

Abstract

We present a practical and efficient means to compute the singular value decomposition (SVD) of a quaternion matrix \mathbf{A} based on bidiagonalization of \mathbf{A} to a real bidiagonal matrix \mathbf{B} using quaternionic Householder transformations. Computation of the SVD of \mathbf{B} using an existing subroutine library such as lapack provides the singular values of \mathbf{A}. The singular vectors of \mathbf{A} are obtained trivially from the product of the Householder transformations and the real singular vectors of \mathbf{B}. We show in the paper that left and right quaternionic Householder transformations are different because of the non-commutative multiplication of quaternions and we present formulae for computing the Householder vector and matrix in each case.

SVD for Quaternion Matrices

Algorithm 2: Quaternion singular value decomposition
$\begin{aligned} & \text { Input }: \mathbf{A} \in \mathbb{H}^{r \times c} \\ & \text { Output }:\end{aligned} \mathbf{U} \in \mathbb{H}^{r \times r}, \quad \mathbf{\Sigma} \in \mathbb{R}^{r \times c}, \quad \mathbf{V} \in \mathbb{H}^{c \times c}$
Bidiagonalize A using Algorithm 1, to obtain $\overline{\mathbf{L}}^{T}, \mathbf{B}$ and $\overline{\mathbf{R}}^{T}$, such that $\overline{\mathbf{L}}^{T} \mathbf{B} \overline{\mathbf{R}}^{T}=\mathbf{A}$

Compute the SVD of \mathbf{B}, to obtain $\mathbf{W} \in \mathbb{R}^{r \times r}, \mathbf{\Sigma}, \mathbf{X} \in \mathbb{R}^{c \times c}$, such that $\mathbf{B}=\mathbf{W} \boldsymbol{\Sigma} \mathbf{X}^{T}$
$\mathbf{U}=\overline{\mathbf{L}}^{T} \mathbf{W} \quad \overline{\mathbf{V}}^{T}=\mathbf{X}^{T} \overline{\mathbf{R}}^{T}$

$$
A=\overline{\mathbf{L}}^{T} B \bar{R}^{T}
$$

$\left[\begin{array}{c:ccccccc}\times & \times & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \times & \times & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \times & \times & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \times & \times & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \times & \times & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \times & \times & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \times & \times \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \times \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right] \quad$ — \quad T
L, R - quaternion, unitary
B - real, bidiagonal

SVD for Quaternion Matrices

Theorem 3. Given an arbitrary quaternion matrix $\mathbf{A} \in \mathbb{H}^{r \times c}$ with r rows and c columns, there exists a pair of unitary quaternion matrices $\mathbf{L} \in \mathbb{H}^{r \times r}$ and $\mathbf{R} \in \mathbb{H}^{c \times c}$, and a real bidiagonal matrix $\mathbf{B} \in \mathbb{R}^{r \times c}$ such that $\mathbf{L A R}=\mathbf{B}$.

SVD for Quaternion Matrices

Theorem 3. Given an arbitrary quaternion matrix $\mathbf{A} \in \mathbb{H}^{r \times c}$ with r rows and c columns, there exists a pair of unitary quaternion matrices $\mathbf{L} \in \mathbb{H}^{r \times r}$ and $\mathbf{R} \in \mathbb{H}^{c \times c}$, and a real bidiagonal matrix $\mathbf{B} \in \mathbb{R}^{r \times c}$ such that

$$
\mathbf{L A R}=\mathbf{B}
$$

Theorem 4. Given an arbitrary quaternion matrix $\mathbf{A} \in \mathbb{H}^{r \times c}$, and a real bidiagonal matrix $\mathbf{B} \in \mathbb{R}^{r \times c}$ as defined in Theorem 3, the singular values of \mathbf{A} are the same as the singular values of \mathbf{B}.

Proof. From Theorem 3 there exist unitary quaternion matrices \mathbf{L} and \mathbf{R} that will transform \mathbf{A} to \mathbf{B}, that is $\mathbf{L A R}=\mathbf{B}$ and since \mathbf{L} and \mathbf{R} are unitary, $\mathbf{A}=\overline{\mathbf{L}}^{T} \mathbf{B} \overline{\mathbf{R}}^{T}$. The singular value decomposition of $\mathbf{B}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$ where \mathbf{U} and \mathbf{V} are orthogonal, hence $\mathbf{A}=\overline{\mathbf{L}}^{T} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \overline{\mathbf{R}}^{T}$. From the uniqueness of the singular values, and from the fact that $\overline{\mathbf{L}}^{T} \mathbf{U}$ is unitary and $\mathbf{V}^{T} \overline{\mathbf{R}}^{T}$ is unitary, it follows that $\boldsymbol{\Sigma}$ contains the singular values of the quaternion matrix \mathbf{A}.

SVD for Quaternion Matrices

Theorem 3. Given an arbitrary quaternion matrix $\mathbf{A} \in \mathbb{H}^{r \times c}$ with r rows and c columns, there exists a pair of unitary quaternion matrices $\mathbf{L} \in \mathbb{H}^{r \times r}$ and $\mathbf{R} \in \mathbb{H}^{c \times c}$, and a real bidiagonal matrix $\mathbf{B} \in \mathbb{R}^{r \times c}$ such that

$$
\mathbf{L A R}=\mathbf{B}
$$

Theorem 3.1. Consider an arbitrary quaternion vector $a \in\left[C \ell_{0,2}\right]^{r}$ and a real vector $v \in \mathbb{R}^{r}$ with unit norm, $v^{T} v=1$. There exist a quaternion vector $u \in\left[C \ell_{0,2}\right]^{r},\|u\|=\sqrt{2}$, and a unit quaternion scalar $z \in C \ell_{0,2}, \widehat{\tilde{z}} z=1$, such that for

$$
\begin{equation*}
H:=z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
H a=\|a\| v \tag{3.6}
\end{equation*}
$$

We call u left Householder vector and H left Householder matrix.

SVD for Quaternion Matrices

Theorem 3.1. Consider an arbitrary quaternion vector $a \in\left[C \ell_{0,2}\right]^{r}$ and a real vector $v \in \mathbb{R}^{r}$ with unit norm, $v^{T} v=1$. There exist a quaternion vector $u \in\left[C \ell_{0,2}\right]^{r},\|u\|=\sqrt{2}$, and a unit quaternion scalar $z \in C \ell_{0,2}, \widehat{\widetilde{z}} z=1$, such that for

$$
\begin{equation*}
H:=z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
H a=\|a\| v \tag{3.6}
\end{equation*}
$$

Remark 3.2. If we take $v=(1,0, \ldots, 0) \in \mathbb{R}^{r}$, then for a fixed $a \in\left[C \ell_{0,2}\right]^{r}$,

$$
H a=\left[\begin{array}{c}
\|a\| \tag{3.14}\\
0 \\
\vdots \\
0
\end{array}\right] \in \mathbb{R}^{r}
$$

SVD for Quaternion Matrices

Theorem 3.1. Consider an arbitrary quaternion vector $a \in\left[C \ell_{0,2}\right]^{r}$ and a real vector $v \in \mathbb{R}^{r}$ with unit norm, $v^{T} v=1$. There exist a quaternion vector $u \in\left[C \ell_{0,2}\right]^{r},\|u\|=\sqrt{2}$, and a unit quaternion scalar $z \in C \ell_{0,2}, \widehat{\widetilde{z}} z=1$, such that for

$$
\begin{equation*}
H:=z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
H a=\|a\| v \tag{3.6}
\end{equation*}
$$

Remark 3.3. Constructed H is unitary because

$$
\begin{align*}
(\widehat{\widetilde{H}})^{T} H & =\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \widehat{\widetilde{z}} z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right)=\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right)\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \tag{3.15}\\
& =I_{r}-2 u \widehat{\widetilde{u}}^{T}+u \widehat{\widetilde{u}}^{T} u \widehat{\widetilde{u}}^{T}=I_{r}-2 u \widehat{\widetilde{u}}^{T}+2 u \widehat{\widetilde{u}}^{T}=I_{r} . \tag{3.16}
\end{align*}
$$

and

$$
H(\widehat{\widetilde{H}})^{T}=z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right)\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \widehat{\widetilde{z}}=z \widehat{\widetilde{z}} I_{r}=\langle z \widehat{\widetilde{z}}\rangle_{0} I_{r}=\langle\widehat{\widetilde{z}} z\rangle_{0} I_{r}=I_{r}
$$

SVD for Quaternion Matrices

Theorem 3.1. Consider an arbitrary quaternion vector $a \in\left[C \ell_{0,2}\right]^{r}$ and a real vector $v \in \mathbb{R}^{r}$ with unit norm, $v^{T} v=1$. There exist a quaternion vector $u \in\left[C \ell_{0,2}\right]^{r},\|u\|=\sqrt{2}$, and a unit quaternion scalar $z \in C \ell_{0,2}, \widehat{\widetilde{z}} z=1$, such that for

$$
\begin{equation*}
H:=z\left(I_{r}-u \widehat{\widetilde{u}}^{T}\right) \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
H a=\|a\| v \tag{3.6}
\end{equation*}
$$

Sequence of steps to find u and z :

1. $\alpha=\|\mathbf{a}\|$
2. $r=\left|\mathbf{a}^{T} \mathbf{v}\right|$
3. $\zeta=\left\{\begin{array}{lll}1 & : & r=0 \\ -\frac{\mathbf{a}^{T} \mathbf{v}}{r} & : & r>0\end{array}\right.$
4. $\mathbf{u}=\frac{1}{\mu}(\mathbf{a}-\zeta \mathbf{v} \alpha)$
5. $z=\zeta^{-1}$
6. $\mu=\sqrt{\alpha(\alpha+r)}$

Proposed solution: Clifford Scores for CUR

03. Clifford Scores

Sample R1 indices of rows and R2 indices of columns with probabilities represented by Clifford scores.

Proposed solution: Clifford Scores for CUR

04. Apply standard methods of CUR for tensors

FSTD

```
Algorithm 4: Fast Sampling Tucker Decomposi-
tion (FSTD) Algorithm for 3rd-Order Tensors [61]
    Input : A data tensor \(\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times I_{3}}\), indices
        \(\mathcal{I}_{n} \subseteq\left[I_{n}\right], n=1,2,3\)
    Output: Tucker approximation of the tensor \(\underline{\mathbf{X}}\)
1 Generate the Intersection Subtensor \(\underline{\mathbf{W}}=\underline{\mathbf{U}}\left(\mathcal{I}_{1}, \mathcal{I}_{2}, \mathcal{I}_{3}\right)\)
2 Generate the Subsampled Matrices
    \(\mathbf{A}_{1}=\mathbf{X}_{(1)}\left(:, \mathcal{I}_{2}, \mathcal{I}_{3}\right), \mathbf{A}_{2}=\mathbf{X}_{(2)}\left(\mathcal{I}_{1},:, \mathcal{I}_{3}\right)\) and
    \(\mathbf{A}_{3}=\mathbf{X}_{(3)}\left(\mathcal{I}_{1}, \mathcal{I}_{2},:\right)\)
\(\left.{ }^{\mathbf{3}} \underline{\mathbf{X}} \cong\left[\llbracket \underline{\mathbf{W}}, \mathbf{A}_{1} \mathbf{W}_{(1)}^{+}, \mathbf{A}_{2} \mathbf{W}_{(2)}^{+}, \mathbf{A}_{3} \mathbf{W}_{(3)}^{+}\right]\right]\)
```

S. Ahmadi-Asl et al., "Cross Tensor Approximation Methods for Compression and Dimensionality Reduction," in IEEE, vol. 9, 2021

** Recent paper on CUR method for quaternion matrices

29.02.2024

Efficient quaternion CUR method for low-rank approximation to quaternion matrix
Pengling Wu^{1}, Kit Ian $\mathrm{Kou}^{1 *}$, Hongmin Cai^{2}, Zhaoyuan Yu^{3}
${ }^{1 *}$ Department of Mathematics, Faculty of Science and Technology, University of Macau, Macau 100190, China.
${ }^{2}$ School of Computer Science \& Engineering, South China University of Technology, Guangzhou 510006, China.
${ }^{3}$ Department, School of Geography, Nanjing Normal University, Nanjing 210023, China.

2 methods of
rows/columns sampling:

- max norm sampling
- uniform sampling

Implementation

My implementation and experiments:
https://colab.research.google.com/drive/1k85yle5sbaqZ9 zeljF9phGcRpfRH_SbO?usp=sharing

What I used:

Implemented product of
elements of Clifford algebra

Elements of $C \ell_{p, q}(\mathbb{R})$
are represented as torch tensors
https://github.com/DavidRuhe/clifford-group-equivariant-neural-networks/blob/master/alge bra/cliffordalgebra.py

```
[] Files
% master
Q Go to file
    F algebra
    \squarecliffordalgebra.py
    metric.py
\square assets
\square configs
G data
    [] hulls.py
    [] nbody.py
    \square03.py
    \square05_regression.py
    [ top_tagging.py
\square engineer
    \square}\mathrm{ argparse
    callbacks
    \square loggers
    metrics
    schedulers
    E trainer
    \square trainer.py
DavidRuhe Initial commit
Code
Blame
        import functools
        import math
        import torch
        from torch import nn
        from .metric import ShortLexBasisBladeOrder, construct_gmt, gmt_element
        class CliffordAlgebra(nn.Module):
        def _init_(self, metric):
            super()._init_()
        self.register_buffer("metric", torch.as_tensor(metric))
        self.num_bases = len(metric)
        self.bbo = ShortLexBasisBladeOrder(self.num_bases)
        self.dim = len(self.metric)
        self.n_blades = len(self.bbo.grades)
        cayley = (
        construct_gmt(
            self.bbo.index_to_bitmap, self.bbo.bitmap_to_index, self.metric
        )
            .to_dense()
            .to(torch.get_default_dtype())
        self.grades = self.bbo.grades.unique()
        self.register_buffer(
            "subspaces",
        "subspaces",
```


What I used for inspiration:

SVD for Quaternions in Matlab

Quaternion Singular Value Decomposition based on Bidiagonalization to a Real Matrix using Quaternion Householder Transformations.

```
S. J. Sangwine }\mp@subsup{}{}{\dagger\S}\mathrm{ N. Le Bihan 
```


What I used for inspiration:

SVD for Quaternions in Matlab

Quaternion toolbox for Matlab

Quaternion and octonion toolbox for Matlab
Brought to you by: n-le_bihan, sangwine

I have not found any open source implementation of SVD for Clifford algebra matrices in Python

What I have implemented

Representation of a torch tensor as a matrix with Clifford algebra elements

```
def hyper_from_arb_tensor(X):
    Builds a hypermatrix with quaternion values from a 3rd order tensor (I, J,4)
    hyper = []
    for i in range(X.shape[0]):
        t_in_row = []
        for j in range(X.shape[1]):
            t_in_row.append(algebra.embed(torch.as_tensor(X[i,j,:]), torch.tensor([0,1, 2, 3])))
        row = torch.stack(t_in_row)
        hyper.append (row)
    hyper_matrix = torch.stack(hyper)
return hyper_matrix
```


What I have implemented

Clifford norm for Clifford algebra elements

```
def cl_norm_2(a):
    \tilde{\hat{a}} * a
    a_bar = clifford_conj(a)
    res = algebra.geometric_product(a_bar, a)
    return res
```


Clifford norm for vectors with Clifford algebra elements

```
def cl_vector_norm_2(vec):
    ||a|| for a -- multivector
    res = algebra.embed(torch.zeros(2**(algebra.dim)), torch.tensor([0,1,2,3]))
    for i in range(vec.shape[0]):
    res += cl_norm_2(vec[i])
    return res
```


What I have implemented

Product of matrices with Clifford algebra elements

```
def vectors_product(u, v):
    u^T * v
    product = torch.zeros((u.shape[0], v.shape[0], 2**(algebra.dim)))
    for i in range(u.shape[0]):
        for j in range(v.shape[0])
            product[i,j] = algebra.geometric_product(u[i], v[j])
    return product
def quat_matmul(A, B):
    res = torch.zeros((A.shape[0], B.shape[1], 2**(algebra.dim)))
    for i in range(A.shape[0]):
        for j in range(B.shape[1]):
            el = torch.zeros_like(A[0,0])
            for s in range(A.shape[1]):
                el += algebra.geometric_product(A[i,s], B[s,j])
            res[i,j] = el
    return res
```


What I have implemented

Householder vector and matrix for a Clifford algebra matrix

```
def householder_vector(a):
    r = torch.sqrt(cl_norm_2(a[0]))[0]
    if r == 0:
        dz = 1
    else:
        dz = - a[0] / r
    alpha = torch.sqrt(cl_vector_norm_2(a))[0]
    mu = torch.sqrt(alpha * (alpha + r))
    dz_v = torch.zeros((a.shape[0], a.shape[1]))
    dz_v[0] = dz
    u = (1 / mu) * (a - alpha * dz_v)
    return u, dz
        def householder_matrix(u, dz):
    uuj = vectors_product(u, clifford_conj(u))
    id = torch.zeros((uuj.shape[0], uuj.shape[1], uuj.shape[2]))
    id[torch.arange(uuj.shape[0]), torch.arange(uuj.shape[1])] = torch.tensor([1., 0., 0., 0.])
    z = clifford_conj(dz)
    H = scalar_matrix_product(z, id - uuj)
    return H
```


What I have implemented

Bidiagonalization of Clifford algebra matrices

```
def bidiagonalize(A):
    u, dz = householder_vector(A[:,0,:])
    L = householder matrix(u, dz)
    A = quat_matmul(L, A)
    B = torch.zeros_like(A)
    B[:,:,0] = A[:,:,0]
    return A, L, B, R
```

 \(R=\) torch.zeros((A.shape[1], A.shape[1], 2**(algebra.dim)))
 \(R[\) torch.arange(A.shape[1]), torch.arange(A.shape[1])] = torch.tensor([1., 0., 0., 0.])
    ```
def full_bidiagonalize(mat):
    For a matrix X returns the factors R, A, L, such that L^{conjugate transpose} * A * R = X
    where L^{conjugate transpose} * L = I,
    R^{conjugate transpose} * R^{conjugate transpose} = I,
    A is real
    A, L, _, R = bidiagonalize(mat)
    if A.shape[1] > 1:
    A_m_1 = clifford_conj(A[:,1:A.shape[1],:].permute(1,0,2))
    R_1, A_m_2, L_1 = full_bidiagonalize(A_m_1)
    B_m_2 = A_m_2
    R, L, A = back_process(R, L, R_1, L_1, A, B_m_2)
    return R, A, L
```


What I have implemented
 SVD of matrices with Clifford algebra elements

```
def qSVD(mat)
    r, a, l = full_bidiagonalize(mat)
    if check_bidiagonalization(mat, r, a, l)
        W, S, Xt = np.linalg.svd(a[:,:,0], full_matrices=True)
    # get U
    W_ = torch.zeros((W.shape[0], W.shape[1], 2**(algebra.dim)))
    W_[:,:,0] = torch.tensor(W)
    U = quat_matmul(clifford_conj(l.permute(1,0,2)), hyper_from_arb_tensor(W_))
    # get Sigma
    Sigma = torch.zeros((S.shape[0], S.shape[0], 2**(algebra.dim)))
    Sigma[:,:,0] = torch.tensor(np.diag(S))
    Sigma = hyper_from_arb_tensor(Sigma)
    # get V
    Xt = torch.zeros((Xt.shape[0], Xt.shape[1], 2**(algebra.dim)))
    Xt_[:,:,0] = torch.tensor(Xt)
    V_conj_T = quat_matmul(hyper_from_arb_tensor(Xt_), r)
    return U, Sigma, V_conj_T
```

```
def qSVD_random_sampling(R1, R2, U, Sigma, V_conj_T)
    US = quat_matmul(U, Sigma)
    SV = quat_matmul(Sigma, V_conj_T)
    norms_US = torch.zeros((US.shape[0], 2**(algebra.dim)))
    for i in range(US.shape[0]):
        norms_US[i] = cl_vector_norm_2(US[i,:,:])
    norms_US /= norms_US.sum()
    norms_SV = torch.zeros((SV.shape[0], 2**(algebra.dim)))
    for i in range(SV.shape[0]):
        norms_SV[i] = cl_vector_norm_2(SV[i,:,:])
    norms_SV /= norms_SV.sum()
    r1 = np.random.choice(U.shape[0], R1, replace=False, p=norms_US[:,0])
    r2 = np.random.choice(V_conj_T.shape[1], R2, replace=False, p=norms_SV[:,0])
```

 return r1, r2
 def check_qSVD(mat, U, Sigma, V_conj_T):
return np.allclose(mat, quat_matmul(quat_matmul(U, Sigma), V_conj_T))

What I have implemented

Classic methods of sampling indices of tubes for CUR

Sampling indices of rows and columns from uniform distribution

```
def uniform_sampling(X, R1, R2, R3):
    r1 = np.random.choice(X.shape[0], R1, replace=False)
    r2 = np.random.choice(X.shape[1], R2, replace=False)
    r3 = np.random.choice(X.shape[2], R3, replace=False)
    return r1, r2, r3
```

Choose rows and columns with max norm (deterministic)
def max_norm_sampling(X, R1, R2, R3):
norms 0, norms 1, norms 2 = torch.empty (X.shape[0]), torch.empty(X.shape[1]), torch.empty (X.shape[2])
for i in range(X. shape [0]):
norms_0[i] = np.linalg.norm(X[i,:,: $]$)
for j in range(X.shape[1]):
norms_1[j] = np.linalg.norm(X[:,j,:])
for k in range(X.shape[2]):
norms_2[k] = np.linalg.norm(X[:,:,k])
norms_0 /= norms_0.sum()
norms_1 /= norms_1.sum()
norms_2 /= norms_2.sum()
$r 1$ = torch.topk(torch.arange(X.shape[0]), R1).indices
r2 = torch.topk(torch.arange(X.shape[1]), R2).indices
r3 = torch.topk(torch.arange(X.shape[2]), R3).indices

Sampling indices of rows and columns depending on the norms of rows and columns
def max_norm_random_sampling(X, R1, R2, R3):
norms_0, norms_1, norms_2 = torch.empty(X.shape[0]), torch.empty(X.shape[1]), torch.empty(X.shape[2])
for i in range(X.shape[0]):
norms_ $\theta[i]=n p . l i n a l g . \operatorname{norm}(X[i,:,:])$
for j in range(X.shape[1]):
norms_1[j] = np.linalg.norm(X[:,j,:])
for k in range(X.shape[2]),
norms_2[k] = np.linalg.norm(X[:, : , k])
norms_0 /= norms_0.sum()
norms_1 /= norms_1.sum()
norms_2 /= norms_2.sum(
$r 1$ = np.random.choice(X.shape[0], R1, replace=False, $\left.p=n o r m s _0\right)$ n) - nn mondnm nhnice (X.shape[1], R2, replace=False, $p=n o r m s ~ 1) ~$ (X.shape[2], R3, replace=False, $p=$ norms_2

What I have implemented

FSTD for CUR

```
def FSTD(X, U, Sigma, V_conj_T, method, R1, R2, R3=3):
    if method == 'uniform
    r1, r2, r3 = uniform_sampling(X.numpy(), R1, R2, R3)
    elif method == 'max_random_norm'
    r1, r2, r3 = max_norm_random_sampling(X.numpy(), R1, R2, R3)
    elif method == 'max_norm':
    r1, r2, r3 = max_norm_sampling(X.numpy(), R1, R2, R3)
    elif method == 'qsvd'
    r1, r2 = qSVD_random_sampling(R1, R2, U, Sigma, V_conj_T)
    r3 = torch.arange(3)
    X = X.numpy()
    W = X[r1[:, None, None], r2[None, :, None], r3[None, None, :]]
    A1 = base.unfold(X[:, r2, :][:, :, r3], 0)
    A2 = base.unfold(X[r1, :, :][:, :, r3], 1)
    A3 = base.unfold(X[r1, :, :][:, r2, :], 2)
    U1 = A1 @ np.linalg.pinv(base.unfold(W,0))
    U2 = A2 @ np.linalg.pinv(base.unfold(W,1))
    U3 = A3 @ np.linalg.pinv(base.unfold(W,2))

\section*{Experiments}

\section*{Experiment 1: Check on Random Tensors}
```

\mp@subsup{\mathbb{R}}{}{3\times3\times3}
1 X = np.random.rand(* (3,3,3))
2 X
array([[[0.75319981, 0.1955606, 0.33991231],
[0.78667539, 0.28490217, 0.98396345],
[0.46448057, 0.54748648, 0.69796232]],
[[0.26664786, 0.75646392, 0.78040978],
[0.12004971, 0.94907363, 0.92413078],
[0.72959673, 0.78549808, 0.4727191]],
[[0.40657765, 0.74970375, 0.15798577],
[0.30541381, 0.23429091, 0.63628207],
[0.37323747, 0.71960061, 0.32840664]]])

```

Choose indices of 2 rows and 2 columns:
Uniform tubes sampling (dime, dim1, dim2): (array([1, 2]), array([1, 0]), Max norm tubes sampling (dime, dim1, dim2): (array([0, 1]), array([0, 1]) Max norm tubes choice (dime, dim1, dim2): (array([2, 0]), array([1, 0]), QSVD tubes sampling (dime, dim1): (array([0, 1]), \(\operatorname{array}([0,1]))\)

Approximation error
0.5715654739444327
0.3739391603252732
0.3146209934000139
0.3582166095037097

\section*{Experiment 2: Check on Random Tensors \(\mathbb{R}^{10 \times 10 \times 3}\)}

\section*{Choose indices of 7 rows and 7}
```

Uniform tubes sampling (dim0, dim1, dim2): (array([0, 2, 9, 6, 3, 4, 1]), array([6, 2, 1, 4, 5, 0, 7]),
Max norm tubes sampling (dim0, dim1, dim2): (array([6, 4, 0, 5, 9, 2, 8]), array([8, 5, 4, 6, 7, 3, 9])
Max norm tubes choice (dim0, dim1, dim2): (array([2, 1, 4, 9, 8, 6, 7]), array([0, 5, 2, 3, 9, 7, 1]),
QSVD tubes sampling (dim0, dim1): (array([6, 1, 3, 7, 2, 4, 8]), array([0, 1, 2, 3, 6, 5, 4]))

```

Approximation error with uniform random sampling 0.41687292509366924
Approximation error with max norm choice 0.33934765604219397
Approximation error with max norm random sampling 0.3265552826218394
Approximation error with QSVD sampling 0.4059891826109999

\section*{Choose indices of \(\mathbf{2}\) rows and \(\mathbf{2}\) columns:}

Number of tubes along dimensions: 2, 2, 3
Uniform tubes sampling (dim0, dim1, dim2): (array([2, 7]), array([7, 5]), Max norm tubes sampling (dim0, dim1, dim2): ( \(\operatorname{array}([6,9]), \operatorname{array}([6,9])\) Max norm tubes choice (dim0, dim1, dim2): (array ([2, 5]), array ([5, 9]), QSVD tubes sampling (dim0, dim1): (array([4, 5]), array([0, 3]))

Approximation error with uniform random sampling 0.6976090679137001
Approximation error with max norm choice 0.5777500171931693
Approximation error with max norm random sampling 0.587445523345739
Approximation error with QSVD sampling 0.6266513453568201

\section*{CUR for Image Completion}
```

Algorithm 1: Tensor CUR algorithm for N th-order tensor completion.
Input : An incomplete data tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$, Tensor Rank \mathbf{R}, the
set of observed components Ω, error bound ε and MaxIter.
Output: Completed data tensor $\underline{\mathbf{X}}^{*}$
$\underline{\mathbf{X}}^{(0)} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ is the original data tensor with missing pixels;
$\mathbf{Y}^{(0)} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ is a zero tensor;
for $n=0,1,2, \ldots$ do
$\underline{\mathbf{Y}}^{(n+1)} \leftarrow$ Compute CUR approximation of the data tensor $\underline{\mathbf{X}}^{(n)}$ using
selected fibers/slices and smoothing them,
$\underline{\mathbf{X}}^{(n+1)} \leftarrow \mathbf{P}_{\underline{\boldsymbol{\Omega}}}\left(\underline{\mathbf{X}}^{(n)}\right)+\mathbf{P}_{\underline{\Omega}^{\perp}}\left(\underline{\mathbf{Y}}^{(n+1)}\right)$,
if $\frac{\left\|\underline{\mathbf{X}}^{(n+1)}-\underline{\mathbf{X}}^{(n)}\right\|_{F}}{\left\|\underline{\mathbf{X}}^{(n+1)}\right\|_{F}}<\varepsilon$ or $n>$ MaxIter then
$\underline{\mathbf{X}}^{*}=\underline{\mathbf{X}}^{(n+1)}$ and break,
end
end

```

\section*{Experiment 3: Image Completion on Peppers}



\section*{Experiment 3: Image Completion on Peppers}

Clifford scores method for CUR
\[
\# \text { rows }=12, \# \text { columns }=12, \quad \# \text { steps }=1
\]

17x17 px


\section*{Experiment 3: Image Completion on Peppers}

Clifford scores method for CUR \# rows = 5, \# columns = 5, \# steps = 1

17x17 px


\section*{Experiment 3: Image Completion on Peppers}

Clifford scores method for CUR \(\#\) rows \(=5, \quad \#\) columns \(=5, \quad \#\) steps \(=6\)
Difference between steps 0 and 1: 0.16846819749941785
Difference between steps 1 and \(2: 0.11226734138371386\)
Difference between steps 2 and \(3: 0.10900644388221012\)
Difference between steps 3 and \(4: 0.09848333310423607\)
Difference between steps 4 and \(5: 0.08370596207945351\)
Difference between steps 5 and \(6: 0.13714777063063543\)


\section*{Experiment 3: Image Completion on Peppers}

Clifford scores method for CUR \(\#\) rows = 5, \(\#\) columns = 5, \(\quad \#\) steps \(=20\)

17x17 px


\section*{Experiment 3: Image Completion on Peppers}

Clifford scores method for CUR \(\#\) rows = 5, \# columns = 5, \# steps = 50

\author{
17x17 px
}


\section*{Experiment 3: Image Completion on Peppers}
```


rows = 5, \# columns = 5, \# steps = 5

```


\section*{Experiment 4: Image Completion on Peppers}



\section*{Experiment 4: Image Completion on Peppers}

Clifford scores method for CUR
\# rows = 5, \# columns = 5, \# steps = 1
17x17 px


\section*{Experiment 4: Image Completion on Peppers}

Clifford scores method for CUR
\# rows = 5, \# columns = 5, \# steps = 50
17x17 px


\section*{Experiment 4: Image Completion on Peppers}
```


rows = 5, \# columns = 5, \# steps = 5

```

Clifford scores


Uniform


Deterministic max norm


Random
max norm


\section*{Experiment 5: Image Completion on Peppers}



\section*{Experiment 5: Image Completion on Peppers}

Clifford scores method for CUR
\# rows = 5, \# columns = 5, \# steps = 1
17x17 px


\section*{Experiment 5: Image Completion on Peppers}
```


rows = 5, \# columns = 5, \# steps = 5

```

Clifford scores


Uniform


Deterministic max norm


Random max norm

```

