Комплексный коэффициент турбулентного обмена в пограничном слое атмосферы Земли

(модификация модели Акерблома — Экмана)

В.А.Гордин. НИУ «Высшая школа экономики» & ФБГУ «Гидрометцентр России»

Аннотация

Направление и скорость в пограничных слоях атмосферы и океана заметно меняются с высотой (глубиной). Измерения, проведенные на Эйфелевой башне и в подледном слое океана, показали систематическую компоненту в этих изменениях. Для описания этих систематических изменений с высотой была предложена модель Акерблома – Экмана. Поворот направления ветра в пограничном слое связывается с кориолисовым ускорением. Второй существенный фактор – турбулентность. Получается – система двух линейных ОДУ второго порядка с переменным положительным коэффициентом (турбулентного обмена, КТО). В предположении постоянства КТО решение системы дает поворот модельного ветра от свободной атмосферы до земли по экмановской спирали на 45°, что заметно (примерно втрое) отличается от наблюдаемых значений. В течение столетия предлагались различные варианты переменного по высоте КТО, допускающие решение этой системы ОДУ в спецфункциях. Здесь решается обратная задача: восстановить КТО по архиву наблюдений (десятки тысяч запусков радиозондов с высоким вертикальным разрешением в разных широтах и разные сезоны) в погранслое. Наилучшее согласование с наблюдениями дает тензор, который допускает интерпретацию как комплексно-значный КТО. Показаны соответствующие оптимальные решения.

Традиционная модель Акерблома - Экмана описывает поведение ветра в пограничном слое (ПС) атмосферы или океана на вращающейся планете:

$$\begin{cases} \frac{d}{dz} \left[k(z) \frac{du}{dz} \right] = -l \left(v - v_g \right), \\ \frac{d}{dz} \left[k(z) \frac{dv}{dz} \right] = l \left(u - u_g \right), \end{cases}$$
(1)

где u(z), v(z) - горизонтальные компоненты, $u_g(z)$, $v_g(z)$ - компоненты геострофического ветра на верхней границе ПС. Вертикальная переменная $z \in [0, H_{max}]$ - высота над земной поверхностью, H_{max} - высота ПС, $l = \sin \varphi \times 1.45842 \times 10^{-4} / c$ - параметр Кориолиса, φ - географическая широта, k(z) > 0 коэффициент турбулентного обмена. Система (1) сингулярна, если и только если $k(z_0) = 0$ при некотором $z_0 \in (0, H_{max})$. Если в системе (1) k(z) = const, то угол поворота ветра в ПС составляет 45⁰.

Первая стадия работы: оптимизация k(z) в классе положительных функций.

Вторая стадия: расширение области оптимизации коэффициента *k*(*z*) – допускаем мнимую часть у этой функции.

Уравнение (1) инвариантно относительно действия группы вращений вокруг вертикальной оси: **SO(2).** Группа **SO(2)** коммутирует только с кососимметричными и скалярными операторами. Следовательно, можно без потери этой инвариантности рассмотреть более общую систему ОДУ:

$$\begin{cases} \frac{d}{dz} \left[\frac{\gamma(z)\sin(\varphi)\frac{dv}{dz} + k(z)\frac{du}{dz} \right] = -l\left(v - v_g\right), \\ \frac{d}{dz} \left[k(z)\frac{dv}{dz} - \frac{\gamma(z)\sin(\varphi)\frac{du}{dz}}{z} \right] = l\left(u - u_g\right), \end{cases}$$
(2)

где второй коэффициент турбулентного обмена $\gamma(z)$ играет роль регуляризатора для (1): ведь даже, если k(z)=0, система (2) не станет сингулярной. Множитель $\sin(\phi)$ здесь добавлен в уравнения (2), чтобы согласовать результаты наших численных экспериментов с данными из Южного полушария.

Перепишем (2) в комплексной форме: w = u + iv, $w_g = u_g + iv_g$ и $\kappa = k - i\gamma \sin(\varphi)$

$$\frac{d}{dz}\left[\kappa(z)\frac{dw}{dz}\right] = \mathrm{i}l\left(w-w_g\right). \tag{3}$$

Если $\kappa(z) = const$, то поворот ветра равен $\arg \sqrt{\frac{i}{\kappa}} = \frac{1}{2} \operatorname{arctg} \frac{k}{\gamma \sin \varphi}$.

<u>Средние наблюдаемые углы поворота 10 – 20⁰</u> соответствуют отношению:

$$\gamma \sin \varphi / k \approx 1.2 - 2.7$$
.

Таким образом, эта поправка КТО (согласно данным измерений) отнюдь не мала.

Задача квадратичного программирования (ЗКП)

Чтобы уменьшить порядок дифференцирования, проинтегрируем ур. (2) по z:

$$\kappa(z)\frac{dw}{dz} = -\psi + c \tag{4}$$

где для каждого профиля $c \in \mathbb{C}$ - константа интегрирования, а векторная (комплексная) функция $\psi(z)$ удовлетворяет дифференциальному уравнению и нормировке:

$$\frac{d\psi}{dz} = \mathrm{i}l\left(w_g - w\right), \qquad \int_0^H \psi(z) dz = 0$$

Ищем $\kappa(z)$ как решение ЗКП: минимизируем среднюю относительную невязку (4) по j=1,...,N вертикальным профилям:

$$L(\kappa(z), \{c_j\}) = \frac{1}{N} \sum_{j=1}^{N} \frac{1}{W_j} \int_{0}^{H_j} \left| \kappa(z) \frac{dw_j}{dz} + \psi_j(z) - c_j \right|^2 dz \to \min_{\kappa(z), \{c_j\}},$$
(5)

где множители $W_j = \int_{0}^{H_j} |\psi(z)|^2 dz$ включены в нормировку функции *L*. Тогда ее минимум $\min_{c_j} L(0,c_j) = 1.$

Пусть 0 < Λ <1 - минимум функционала (5). Значение 100% (1-Λ) интерпретируется как средний коэффициент детерминации, см. Таблицу 2.

Данные

Использованы данные 26142 радиозондов, удовлетворяющих условиям:

- 1. Заявленная точность измерения скорости $0.1 \ m/c$ (а не 1 узел).
- 2. Хорошее среднее вертикальное разрешение (более 25 точек в слое 0 1000 м).
- **3.** Высота ПС $H_i > 100 M$.
- 4. Вариация ветра в ПС больше, чем 2.5 м/с.
- 5. Высота первого измерения профиля не больше, чем 5м.

Географическое расположение использованных аэрологических станций

Расположение 111 станций, с которых учитывались данные радиозондирования. Крестиком показаны **28 "интенсивных станций",** с которых усвоено много данных (более 400 запусков) в нашем архиве.

Число Ричардсона *Ri* - безразмерная функция высоты *z*:
$$Ri(z) = \frac{g}{\Theta} \frac{\frac{\partial \Theta}{\partial z}}{\left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2}$$
.

Значения $Ri > Ri_c = 0.25$ соответствуют устойчивой стратификации, $Ri < Ri_c$ - неустойчивой, а Ri < 0 - строго неустойчивой стратификации атмосферы (в столбе существует температурная инверсия.

Сведения по параметрам профилей в коде BUFR за период 4 апреля 2018 - 29 ноября 2019

Название	Условие	Число	Высота ПС H_j
Bce	нет	26142	671±516м
Глубокий	<i>H</i> _j >1000 <i>м</i>	8462	1592±454м
Мелкий	<i>H</i> _j < 500 <i>м</i>	12051	270±115м
Устойчивый	$\forall z \in \left[0; H_j\right] Ri(z) > 0.3$	2622	201±105м
Неустойчивый	$\exists z_0 \in \left[0; H_j\right] Ri(z_0) < 0.2$	22584	742±517м

а) Вещественная часть коэффициента $k(S_1)$,

b) мнимая часть
$$\gamma(S_1)$$
.

Оптимальный (разные цвета для различных случаев) КТО κ , зависящий от относительной высоты $S_1 = z/H$. Видим, что для случая глубокого погранслоя комплексный коэффициент заметно больше. Добавленная мнимая часть коэффициента в разы больше, чем старая, вещественная.

Оптимальные нормализованные КТО $\tilde{\kappa}(S_1)$, зависящие от относительной высоты $S_1 = z / H_j$, были определены и тут показаны для 28 "интенсивных" станций.

Модельные (согласно ОДУ (2)) углы поворота для оптимальных: вещественного k и комплексного $\kappa = H\tilde{\kappa}(z/H)$

Основной поворот в нижней части (нижние 400 м).

Случаи	Аргумент (ы) S	Средний коэффициент детерминации				$1 - \Lambda \left(\tilde{\kappa} \in \mathbb{C} \right)$
		$100\%(1-\Lambda)$				$1 - \Lambda (\tilde{\kappa} \in \mathbb{R})$
Bce		38,5%	11,7%	48,3%	13,8%	3,5
Глубокие	Относительная высота S ₁	34,6%	7,7%	35,0%	8,0%	4,5
Тонкие		62,3%	17,4%	72,6%	20,9%	3,3
Устойчивые		65,9%	10,2%	77,5%	11,6%	7,1
Неустойчивые		38,9%	12,3%	48,2%	14,0%	3,5
Bce	Модуль сдвига ветра S ₂	37,6%	12,2%	46,3%	15,1%	3,1
Глубокие		29,2%	8,3%	29,8%	8,6%	3,4
Тонкие		59,9%	18,2%	67,7%	22,4%	3,0
Устойчивые		59,7%	11,6%	67,8%	13,5%	5,5
Неустойчивые		39,1%	12,6%	46,7%	15,3%	3,0
Bce	Число <i>Ri</i>	24,4%	11,4%	34,1%	12,6%	2,7
Глубокие		29,2%	7,4%	29,9%	7,5%	4,1
Тонкие		36,0%	16,8%	43,0%	19,8%	2,1
Устойчивые		33,0%	9,7%	39,4%	10,3%	4,0
Неустойчивые		28,6%	11,8%	35,3%	12,8%	2,7
Bce		41,2%	12,7%	53,4%	15,4%	3,4
Глубокие	Относительная высота S ₁ и модуль сдвига ветра S ₂	35,2%	8,7%	35,7%	9,1%	4,0
Тонкие		65,2%	18,9%	76,7%	22,9%	3,3
Устойчивые		66,3%	11,7%	78,1%	13,5%	6,3
Неустойчивые		42,0%	13,1%	53,4%	15,7%	3,4
Bce		39,5%	12,4%	50,3%	13,8%	3,6
Глубокие	Относительная высота S ₁ и число Ричардсона	34,7%	7,9%	35,1%	8,1%	4,5
Тонкие		63,6%	18,4%	74,7%	21,4%	3,4
Устойчивые		65,9%	10,2%	77,5%	11,6%	7,1
Неустойчивые		40,6%	12,9%	50,1%	14,1%	3,6

Сравнение реальных профилей и модельных решений

Представим КТО κ в виде $\kappa = H\tilde{\kappa}(S_1)$. Тогда можно найти решение $\hat{w}_j(z, \kappa, w_0)$ уравнения (2) при условиях Дирихле $w(H) = w_g$, $w(0) = w_0$ и оценим среднюю ошибку восстановленного профиля по сравнению с реальным:

$$ABS_{speed}(S_{1}, \kappa, w_{0}) = \frac{1}{N} \sum_{j=1}^{N} \left\| \hat{w}_{j}(S_{1}H_{j}, \kappa, w_{0}) \right\| - \left| w_{j}(S_{1}) \right\|$$

$$ABS_{direction}\left(S_{1},\kappa,w_{0}\right) = \frac{1}{\tilde{N}}\sum_{j=1}^{\tilde{N}}\left|\arg\hat{w}_{j}\left(S_{1}H_{j},\kappa,w_{0}\right) - \arg w_{j}\left(S_{1}\right)\right|,$$

Мы исключаем из оценки $ABS_{direction}$ случаи с малыми скоростями $|\hat{w}_j|$ или $|w_j| \leq 2m/s$, когда определение направления вектора ненадежно. Поэтому верхний предел во второй сумме для направлений меньше: $\tilde{N} \approx 0.69N$.

Ошибка восстановления профилей для оптимальных вещественного и комплексного коэффициентов

Для модуля скорости ветра

для направления ветра

Заключение

- Первоначальная модель Аккерблома Экмана предсказывает поворот ветра в ПС на 45°. Наблюдаемые повороты в среднем втрое меньше.
- 2. В модернизированную модель включен коэффициент γ, и в результате оптимизации КТО согласованность с данными зондирования в коде BUFR возрастает в 7 раз для устойчивой

стратификации и в 3.5 – для неустойчивой. Коэффициент γ может интерпретироваться как мнимая часть коэффициента *κ*;

Проведено сравнение различных параметризаций КТО к, построенных как функция относительно высоты S₁ = z / H, или от сдвига ветра S₂, или от числа Ричардсона Ri. Предпочтительна относительная высота.

Литература

С.С.Зилитинкевич. Атмосферная турбулентность и планетарные пограничные слои. 2013, М., Физматлит.

Н. В. Вазаева, О. Г. Чхетиани, М. В. Курганский, М. А. Каллистратова. Спиральность и турбулентность в атмосферном пограничном слое. Известия РАН. Физика атмосферы и океана, 2021, Т. 57, № 1, с.34-52.

Ph.L.Bykov, V.A.Gordin. Big data and inverse problem for Ekman - Akerblom model. Research Activities in Atmospheric and Oceanic Modeling, № 48, pp. 4.5-4.6, 2018.

P.L. Bykov, V.A. Gordin. Journal of Inverse and Ill-posed Problems. https://doi.org/10.1515/jiip-2021-0039