

National Research University Higher School of Economics

Decision Choice and Analysis Laboratory (DeCAn Lab)

SCW 2024

S-stable tournament solutions: review and new results

Andrey Subochev

Alternatives and comparisons

Alternatives and comparisons

- A the general set of alternatives.
- X the menu: $X \subseteq A \land |X| < \infty$.
- *R* results of binary comparisons, $R \subseteq A \times A$. *R* reveals and represents chooser's preferences.
- *P* asymmetric part of *R*, $P \subseteq R$. *P* represents strict preferences.
- *R* is presumed to be complete: $\forall x, y \in A, xRy \lor yRx$. That is, *R* and *P* are dual.
- If there are no indifferences, then (X, P) (proper) tournament.
- If there are indifferences, then (X, P) weak tournament.
- $R|_X$ denotes restriction of R onto X, $R|_X = R \cap X \times X$

Optimal choices

3

Optimal choices

The choice is a partition of X into two subsets - the choice set S and the set $X \setminus S$ of rejected alternatives.

Thus, choices are represented by a correspondence S(X, P): $2^A \times 2^{A \times A} \rightarrow 2^A$

A rational chooser should optimize. Optimization is understood as *maximization of preferences*.

The alternative that *P*-dominates any other alternative in *X* is called the *Condorcet winner*.

An alternative that *R*-dominates any other alternative in X is called *a maximal element* (of $R|_X$).

- *CW*(*X*, *P*) the set of Condorcet winners.
- MAX(X, P) the set of maximal elements of $R|_X$.

A maximal element of the preference relation is presumed to be the best choice for the chooser, and a maximal element which is the Condorcet winner is presumed to be the only best choice.

Condorcet consistency: $MAX(X, P) \subseteq S(X, P) \land CW(X, P) \neq \emptyset \Rightarrow S(X, P) = CW(X, P)$.

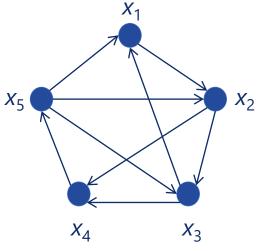
Tournament solutions

Tournament solutions

A *tournament solution S* is a choice correspondence that has the following properties:

- 0. Locality: $S(X, P)=S(P|_X) \subseteq X$
- **1.** Nonemptiness: $\forall X \neq \emptyset$, $\forall P$, $S(X, P) \neq \emptyset$;
- 2. Neutrality: permutation of alternatives' names and choice commute;
- 3. Condorcet consistency:

 $MAX(X, P) \subseteq S(X, P) \land (CW(X, P) \neq \emptyset \Rightarrow S(X, P) = CW(X, P)).$



4

Uncovered set. Minimal covering set

Top cycle. Uncovered set. Minimal covering set

- A subset *Y* of menu *X* is a *dominant set* if $\forall x \in Y, \forall y \in X \setminus Y, xPy$.
- TC(X, P) the (unique) minimal dominant set (Top cycle).
- Alternative *x* covers alternative *y* in *X* if $xPy \land \forall z \in X, yPz \Rightarrow xPz$.
- UC(X, P) the set of uncovered (in X) alternatives (Uncovered set).
- A subset Y of menu X is a *covering set* if the following two conditions hold:
- 1. UC(Y, P)=Y;
- 2. $\forall x \in X \setminus Y, x \notin UC(Y \cup \{x\}, P).$

MC(X, P) - the (unique) minimal covering set.

Stability external and internal. S-stability

Stability external and internal. S-stability

A subset *Y* of menu *X* is an *internally stable* set if $\forall x, y \in Y, \neg yPx$.

A subset Y of menu X is an *externally stable* set if $\forall x \in X \setminus Y, \exists y \in Y : yPx$.

- 1. MAX(Y, P)=Y;
- 2. $\forall x \in X \setminus Y, x \notin MAX(Y \cup \{x\}, P).$

A subset Y of menu X is an *internally S-stable* set if S(Y, P)=Y.

A subset *Y* of menu *X* is an *externally S-stable* set if $\forall x \in X \setminus Y, x \notin S(Y \cup \{x\}, P)$.

A von Neumann-Morgenstern stable set is an internally and externally MAX-stable set.

A covering set is an internally and externally UC-stable set.

Minimal externally S-stable sets

The minimal externally UC-stable set is unique and also internally UC-stable.

Therefore, the minimal externally UC-stable set is the minimal covering set MC.

Thus, one may define the covering set as only externally UC-stable and obtain the same MC.

For any tournament solution S(X, P) there is another tournament solution \hat{S} :

 $\hat{S}(X, P)$ – the union of minimal externally S-stable sets.

$MC = \widehat{UC}$

An alternative that *P*-dominates some other alternative in *X* is called a *Condorcet non-looser*.

CNL(X, P) - the set of Condorcet non-loosers.

The minimal externally CNL-stable set is the minimal dominant set TC. It is unique and also internally CNL-stable.

 $TC = \widehat{CNL}$

Self-stability

8

Self-stability

A tournament solution *S* is *self-stable* if *S*(*X*, *P*) is the unique minimal internally and externally *S*-stable set in *X*. If S is self-stable then $\hat{S}=S$. *MC* and *TC* are self-stable. Therefore, \widehat{MC} =*MC*, \widehat{TC} =*TC*. **Theorem** (Brand and Harrenstein, 2011): S is self-stable if and only if $Z \subseteq X \cap Y$ and $Z \neq \emptyset$ imply $S(X, P) = S(Y, P) = Z \iff S(X \cup Y, P) = Z$ (Stability).

Stability and properties related to stability

Stability: $Z \subseteq X \cap Y$ and $Z \neq \emptyset$ imply $S(X) = S(Y) = Z \iff S(X \cup Y) = Z$.

• $\hat{\alpha}$ -property (the generalized Nash independence of irrelevant alternatives or

the Outcast property or the Strong Superset property):

 $S(X)=S(Y)=Z \iff (S(X\cup Y)=Z \land Z \subseteq X \land Z \subseteq Y).$

• $\hat{\gamma}$ -property:

 $S(X)=S(Y)=Z \Longrightarrow S(X\cup Y)=Z.$

- *Idempotence*: $\forall X, S(S(X))=S(X)$.
- The Aïzerman condition: $\forall X, \forall Y, S(X) \subseteq Y \subseteq X \Rightarrow S(Y) \subseteq S(X)$.

Outcast \Leftrightarrow *Idempotence* \land *the Aïzerman condition*

Self-stability of \hat{S}

10

Self-stability of \widehat{S}

Is the union of minimal externally *S*-stable sets (self-)stable? Not always!

 $BA(X, P) - \text{the } Banks \, set \, (\text{the union of maximal elements of all maximal chains}).$ $\widehat{BA} \text{ is not stable}.$ $\mathbf{Theorem: } \widehat{S} \text{ is self-stable}$ if and only if the minimal externally S-stable set is uniquely defined.Since minimal externally UC- and CNL-stable sets are uniquely defined, corresponding solutions $MC = \widehat{UC}$ and $TC = \widehat{CNL}$ are (self-)stable.

Stability of \widehat{MAX}

11

Stability of \widehat{MAX}

Let us consider the union of minimal externally stable sets ES. By definition, $ES = \widehat{MAX}$.

Is the minimal externally stable set uniquely defined?

No!

Minimal externally stable sets are $\{x, y\}$, $\{x, z\}$, $\{y, z\}$.

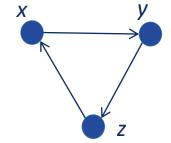
Does the union of minimal externally stable sets ES satisfy stability?

Yes!

Why?

 \hat{S} was originally defined for <u>tournament solutions</u> S.

But MAX(X, R) – is not a tournament solution, since it doesn't satisfy Nonemptiness!



Versions of ES in weak tournaments

- **Version 1.** If $\forall x \in X \setminus Y$, $\exists y \in Y$: y P x then Y is a *P*-externally stable set.
- The union of minimal *P*-externally stable sets $ES = \widehat{MAX}$. ES satisfies stability.
- **Version 2.** If $\forall x \in X \setminus Y$, $\exists y \in Y$: *yRx* then *Y* is a *R*-externally stable set.
- The union of minimal *R*-externally stable sets $RES = \widehat{CW}$.
- *RES* satisfies $S(X) \subseteq Y \subseteq X \Rightarrow S(Y) = S(Y)$ (the Outcast property) and $S(X) = S(Y) \Rightarrow S(X) \subseteq S(X \cup Y)$.
- But *RES* violates stability since it is possible that $S(X) = S(Y) \land S(X) \subset S(X \cup Y)$
- **Version 3.** If $\forall x \in X \setminus Y$, $(\exists y \in Y: y \land Px) \lor (\forall y \in Y: y \land x)$ then Y is *weakly stable* (Aleskerov & Kurbanov, 1999).
- Let PW select all partial winners, $PW(X, P) = \{x \in X | (\forall y \in X, xRy) \land (\exists y \in X, xPy)\}.$
- The union of minimal weakly stable sets WS= \widehat{PW} .

WS violates the Outcast property, so it is not stable.

National Research University Higher School of Economics

Decision Choice and Analysis Laboratory (DeCAn Lab)

SCW 2024

Thank you!

101000, Russia, Moscow, Myasnitskaya, 20 www.hse.ru