

National Research University Higher School of Economics Decision Choice and Analysis Laboratory (DeCAn Lab)

SCW 2024

Choosing optimal sets: stable tournament solutions and their extensions

Angelina Yudina

Alternatives, comparisons, choices

- A the general set of alternatives.
- X a menu: $X \subseteq A \land |X| < \infty$.
- *R* results of binary comparisons, $R \subseteq A \times A$.

P − the asymmetric part of *R* (strict preferences), *P* ⊆ *R*: (*x*, *y*) ∈ *P* ⇔ ((*x*, *y*) ∈ *R* ∧ (*y*, *x*) ∉ *R*).

R is presumed to be complete: $\forall x \in A, \forall y \in A, (x, y) \in R \lor (y, x) \in R$.

Consequently, *R* and *P* are dual.

(X, P) – abstract game or weak tournament.

If $P|_X = P \cap X \times X$ is connex, $\forall x \in X, \forall y \in X \land y \neq x$, $(x, y) \in P \lor (y, x) \in P$, then

(X, P) - (proper) tournament.

Tournament solutions

Tournament solutions

A *tournament solution S* is a choice correspondence

 $S(X, P): 2^A \times 2^{A \times A} \longrightarrow 2^A$

that has the following properties:

- **0.** Locality: $S(X, P)=S(P|_X) \subseteq X$
- **1.** Nonemptiness: $\forall X \neq \emptyset$, $\forall P$, $S(X, P) \neq \emptyset$;
- 2. Neutrality: permutation of alternatives' names and choice commute;
- 3. Condorcet consistency:

a) $MAX(P|_X) \subseteq S(X, P)$

b) $(\exists cw \in X: \forall x \in X, cwPx) \Rightarrow S(X, R) = \{cw\}.$

X₁ X_{2} X_3 X₄ **X**5 **X**₁ 0 0 1 0 $\mathbf{0}$ X_2 0 0 1 1 $\mathbf{0}$ X₃ 0 0 0 1 1 X₄ 0 0 0 0 1 X₅ 0 0 1 1

Properties

4

Properties

- **P-monotonicity** (monotonicity with respect to preferences P) If $P_1|_{X \setminus \{x\}} = P_2|_{X \setminus \{x\}} \land \forall y \in X \setminus \{x\}, (xP_1y \Rightarrow xP_2y) \land (xR_1y \Rightarrow xR_2y)$ then $x \in S(X, P_1) \Rightarrow x \in S(X, P_2)$.
- Stability

 $Z \subseteq X \cap Y$ and $Z \neq \emptyset$ imply $S(X, P) = S(Y, P) = Z \iff S(X \cup Y, P) = Z$.

• Computational simplicity

There is a polynomial algorithm for computing S.

Properties related to stability

Stability: $Z \subseteq X \cap Y$ and $Z \neq \emptyset$ imply $S(X, P) = S(Y, P) = Z \iff S(X \cup Y, P) = Z$.

• $\hat{\alpha}$ -property (Outcast, SSP, generalized Nash independence of irrelevant alternatives):

 $S(X, P)=S(Y, P)=Z \leftarrow (S(X \cup Y, P)=Z \land Z \subseteq X \land Z \subseteq Y).$

- $\widehat{\gamma}$ -property: $S(X, P) = S(Y, P) = Z \Longrightarrow S(X \cup Y, P) = Z$.
- *Idempotence*: $\forall X, S(S(X, P), P) = S(X, P).$
- The Aïzerman condition: $\forall X, \forall Y, S(X, P) \subseteq Y \subseteq X \Longrightarrow S(Y, P) \subseteq S(X, P)$.
- Independence of irrelevant comparisons (independence of losers): If P_1 and P_2 are such that $\forall x \in S(X, P_1), \forall y \in X, ((xP_1y \Leftrightarrow xP_2y) \land (xR_1y \Leftrightarrow xR_2y))$ then $S(X, P_2) = S(X, P_1)$.

 $Outcast \Leftrightarrow Idempotence \land the A izerman condition$

Outcast \land *P-monotonicity* \Rightarrow *Independence of irrelevant comparisons*

Top cycle TC. The union of minimal externally stable sets ES

A subset *Y* of menu *X* is a *dominant set* if $\forall x \in X \setminus Y, \forall y \in Y, yPx$.

TC(*X*, *P*) - the (unique) minimal dominant set (*Top cycle*). (Schwartz 1970, 1972, Good 1971, Smith 1973)

A subset Y of menu X is an *externally stable set* if $\forall x \in X \setminus Y, \exists y \in Y: yPx$. **ES**(X, P) - the union of minimal externally stable sets. (Wilhelm 1977, Wuffl, Feld, Owen, Grofman 1989, Subochev 2008)

Bipartisan set BP

Bipartisan set BP

Comparison function: $g(x_1, x_2)=1 \Leftrightarrow x_1 P x_2, g(x_1, x_2)=-1 \Leftrightarrow x_2 P x_1, \text{ otherwise } g(x_1, x_2)=0.$

Since matrix $\mathbf{G} = ||g(x_i, x_i)||$ is skew-symmetric,

formula $\mathbf{p}_1 \mathbf{G} \mathbf{p}_2$ defines a binary relation on the set of lotteries: $\mathbf{p}_1 \mathbf{G} \mathbf{p}_2 \ge 0 \iff \mathbf{p}_1 \gtrsim \mathbf{p}_1$.

If $\mathbf{p}_0 \mathbf{G} \mathbf{p} \ge 0$ for all \mathbf{p} then \mathbf{p}_0 is a *maximal lottery*. The set {x} is the support of a maximal lottery on $X \Leftrightarrow x$ is a maximal element of $R|_{x}$. **Example:** The Condorcet cycle. $X = \{x_1, x_2, x_3\}, R \mid_X = \{(x_1, x_2), (x_1, x_2), (x_1, x_2)\}$. "Paper, Scissors, Stone" Maximal lottery $\mathbf{p}_{max} = (1/3, 1/3, 1/3)$. Note that \mathbf{p}_{max} is an eigenvector of **G** with the eigenvalue 0, and $\mathbf{pGp}_{max}=0$ for all **p**.

Bipartisan set BP (Laffond, Laslier, Le Breton, 1993) of a (proper) tournament (X, P) is the support of the (unique) maximal lottery.

X₁ **X**₂ X X_1 $\mathbf{0}$ 1 -1 X_{2} -1 ()1 X₂ 1 -1 0

Tournament game –

 x_2 ("Stone")

 x_3 ("Scissors")

Matrix G

 x_1 ("Paper")

Minimal covering set MC

Alternative *x* covers alternative *y* in *X* if $xPy \land \forall z \in X, yPz \Rightarrow xPz$.

UC(X, P) - the set of uncovered (in X) alternatives (Uncovered set).

Covering set

Version 1 (Dutta, 1988) $Y \subseteq X$ is a *covering* set in $X \Leftrightarrow UC(Y) = Y$ and $\forall x \in X \setminus Y, x \notin UC(Y \cup \{x\})$. **Version 2** (Laslier, 1997; Brandt, 2011) $Y \subseteq X$ is a *covering* set in $X \Leftrightarrow \forall x \in X \setminus Y, x \notin UC(Y \cup \{x\})$.

Minimal covering set MC of a (proper) tournament (X, P) is the (unique) minimal covering set.

Properties of TC, ES, BP and MC

	TC	ES	BP	МС
Monotonicity	Yes	Yes	Yes	Yes
Stability	Yes	Yes	Yes	Yes
$\hat{\alpha}$ -property (Outcast)	Yes	Yes	Yes	Yes
Idempotence	Yes	Yes	Yes	Yes
Aizerman-Aleskerov property	Yes	Yes	Yes	Yes
Independence of irrelevant comparisons	Yes	Yes	Yes	Yes
$\hat{\gamma}$ -property	Yes	Yes	Yes	Yes
Computational simplicity	Yes	Yes	Yes	Yes
Uniqueness	Yes	No	Yes	Yes

• Uniqueness

There is just one "best" (minimal "good") subset in each menu.

The conservative extension [S]

The conservative extension (Brandt, Brill, Harrenstein 2014, 2018)

A proper tournament (X, T) is called *orientation* of a weak tournament (X, P) if $P \subseteq T$.

For a tournament solution S(X, P), its *conservative extension* (denoted [S]) to weak tournaments is the choice correspondence [S](X, P) defined thus:

an alternative x from X belongs to [S](X, P) if and only if

there is an **orientation** (X, T) of (X, P), such that x belong to S(X, T). That is, [S](X, P) is the union of S(X, T) over all orientations T of P.

Theorem: The conservative extension preserves properties of the original solution, except computational simplicity and uniqueness.

Decision Choice and Analysis Laboratory (DeCAn Lab) NRU HSE

Choosing optimal sets: stable tournament solutions and their extensions

Example

Example

[*BP*]={*a*, *b*, *c*}

Essential set E

Essential set E

- 1. The set of maximal lotteries is always nonempty.
- 2. When a tournament (*X*, *P*) is weak, there might be more than one maximal lottery.

Essential set E (Dutta, Laslier, 1999)

of a (weak) tournament (X, P) is the union of supports of all maximal lotteries.

Properties of *E*

	Ε
Monotonicity	Yes
Stability	Yes
$\hat{\alpha}$ -property (Outcast)	Yes
Idempotence	Yes
Aizerman-Aleskerov property	Yes
Independence of irrelevant comparisons	Yes
$\hat{\gamma}$ -property	Yes
Computational simplicity	Yes
Uniqueness	No

Properties of E

Versions of the covering relations and the uncovered sets in weak tournaments

Versions of the covering relations and the uncovered sets in weak tournaments

The covering relations (Fishburn, 1977; Miller, 1980; McKelvey, 1986; Duggan, 2007, 2013)

 $P(x) = \{y \in X \mid yPx\}, P^{-1}(x) = \{y \in X \mid xPy\}, P^{0}(x) = \{y \in X \mid \neg xPy \land \neg yRx\}$

- *upper section, lower section* and *horizon* of x in X, correspondingly.

The *covering* relation $C \subseteq X \times X$ is a strengthening of $P|_X$.

The *Miller* covering C_{M} : $xC_{M}y \Leftrightarrow xPy \land P^{-1}(y) \subset P^{-1}(x)$. The *weak* Miller covering C_{WM} : $xC_{WM}y \Leftrightarrow P^{-1}(y) \subset P^{-1}(x)$. The *Fishburn* covering $C_F: xC_Fy \iff xPy \land P(x) \subset P(y)$. The *weak* Fishburn covering $C_{WF}: xC_{WF}y \iff P(x) \subset P(y)$. The *McKelvey* covering C_{McK} : $xC_{McK}y \Leftrightarrow xPy \land P^{-1}(y) \subset P^{-1}(x) \land P(x) \subset P(y)$. The weak McKelvey covering C_{WMcK} : $xC_{WMcK}y \Leftrightarrow [P^{-1}(y) \subset P^{-1}(x) \land P(x) \subseteq P(y)] \lor [P^{-1}(y) \subseteq P^{-1}(x) \land P(x) \subset P(y)].$ The Duggan (deep) covering C_{D} : $xC_{D}y \Leftrightarrow P^{0}(y) \cup P^{-1}(y) \subset P^{-1}(x)$.

The shallow covering $C_s: xC_s y \Leftrightarrow xPy \land P^{-1}(y) \subset P^{-1}(x) \cup P^0(y)$.

The set of all alternatives that are (weakly) covered in X by no alternative is the (inner) uncovered set of X. The shallow, Miller, Fishburn, McKelvey and Duggan uncovered sets and their inner versions are denoted $UC_{\rm S}$ $UC_{\rm M}$ $UC_{\rm F}$ $UC_{\rm MCK}$ $UC_{\rm D}$ $UC_{\rm IM}$ $UC_{\rm IF}$ $UC_{\rm IMCK}$.

Versions of MC

Versions of MC

Covering set (Dutta, 1988)

- $\forall x \in X \setminus Y, x \notin UC(Y \cup \{x\}), \text{ and }$
- UC(Y) = Y.

Covering set (Laslier, 1997)

• $\forall x \in X \setminus Y, x \notin UC(Y \cup \{x\}).$

15

Minimal V-covering set MC_v (Brandt, 2011)

of a weak tournament (X, P) is the union of all minimal V-covering sets.

 $Y \subseteq X$ is a **V-covering set** $\Leftrightarrow \forall x \in X \setminus Y, x \notin UC_V(Y \cup \{x\}),$ where **V** \in {S, M, IM, F, IF, McK, IMcK, D}. $MC^*_{IMCK} = \emptyset$ $MC_{IMCK} = \{x_1, x_3, x_4\}$

Choosing optimal sets: stable tournament solutions and their extensions

16

Properties of the versions of *MC*

	MCs	MC _{IM}	MC _M	MC _{IF}	MC _F	MC _{IMcK}	MC _{McK}	MC _D
Stability	No	No	No	No	No	No	Yes	Yes
$\hat{\alpha}$ -property (Outcast)	No	No	No	No	No	No	Yes	Yes
Idempotence	No	No	No	No	Yes	No	Yes	Yes
Aïzerman property	No	No	No	No	No	No	Yes	Yes
$\hat{\gamma}$ -property	No	No	No	No	No	No	Yes	Yes
Uniqueness	No	No	No	No	No	No	Yes	Yes

Versions of TC and ES

Versions of TC and ES

A nonempty subset Y of X is called

if	$\forall x \in X \backslash Y,$	$\forall y \in Y: y \mathbf{P} x$
if	$\forall x \in X \backslash Y,$	$\forall y \in Y: yRx$
if	$\forall x \in X \backslash Y,$	$\exists y \in Y: y Px$
if	$\forall x \in X \backslash Y,$	$\exists y \in Y: yRx$
if	$\forall x \in X \backslash Y,$	$(\exists y \in Y: y Px) \lor (\forall y \in Y, y Rx)$
	if if if if if	if $\forall x \in X \setminus Y$,if $\forall x \in X \setminus Y$,

Tournament solutions: the union of all minimal

P-dominant sets *STC* a.k.a. the *strong top cycle* (Schwartz 1970, 1972)

R-dominant sets WTC a.k.a. the weak top cycle (Good 1971, Smith 1973)

P-externally stable sets *ES* (Wilhelm 1977, Wuffl, Feld, Owen, Grofman 1989, Subochev 2008) *R*-externally stable sets *RES* (Aleskerov, Subochev 2009, 2013) Weakly stable sets *WS* (Aleskerov, Kurbanov 1999)

Choosing optimal sets: stable tournament solutions and their extensions

Properties of the versions of *TC* **and** *ES*

	ES	RES	WS	STC	WTC
Monotonicity	Yes	Yes	Yes	Yes	Yes
Stability	Yes	No	No	No	Yes
$\hat{\alpha}$ -property (Outcast)	Yes	Yes	No	No	Yes
Idempotence	Yes	Yes	No	Yes	Yes
Aïzerman property	Yes	Yes	No	No	Yes
Independence of irrelevant comparisons	Yes	Yes	No	No	Yes
$\hat{\gamma}$ -property	Yes	No	No	No	Yes
Computational simplicity	Yes	Yes	?	Yes	Yes
Uniqueness	No	No	No	No	Yes

Theorem (Subochev 2024): $RES(X, P) = RES(Y, P) \Longrightarrow RES(X, P) \subseteq RES(X \cup Y, P)$.

National Research University Higher School of Economics

Decision Choice and Analysis Laboratory (DeCAn Lab)

SCW 2024

Thank you!

101000, Russia, Moscow, Myasnitskaya, 20 www.hse.ru