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o
Real Clifford geometric algebra (GA)

Let us consider the real Clifford geometric algebra (GA) G, 4 with the identity

element e = 1 and the generators e;, a=1,2,...,n, where n=p+q > 1:
€:6p + €pes = 2Mpe€, n = (na) = diag(1,...,1,-1,...,-1).
Consider the subspaces gg,q of grades k = 0,1,...,n, which elements are linear

combinations of the basis elements ea = €,,4,...2, = €1, €4, - - - €3, With ordered
multi-indices of length k. An arbitrary multivector M € G, 4 has the form

M = Z maéa € QM, my € R,
A

where we have a sum over arbitrary multi-index A of length from 0 to n. The

projection of M onto the subspace Q;’j’q is denoted by (M).

The grade involution and reversion of a multivector M € G, 4 are denoted by

~ n ~ n k(k—1)
M= (-1 My, M=) (-1)"= (M) (1)
k=0 k=0
m = Kﬂ\l@, M1M2 = /,\/\I/Zl\/;i;la VMla M2 € gp,q- (2)
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|
Complexified Clifford GA

Let us consider the complexified Clifford geometric algebra G5, := C® G, 4. An
arbitrary element of M € G has the form

M = Z maéa € gf’m my € C.
A

Note that qu has the following basis of 2"+1 elements:
e, e, e1, /ey, €, i€z, ..., €1 n,l€1. o (3)

In addition to the grade involution and reversion, we use the operation of complex
conjugation, which takes complex conjugation only from the coordinates m4 and
does not change the basis elements ex:

M=) maencGS,, macC, MegGS,.
A

We have o
MMy = My My, YMy, My € Gy .
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-
Unitary space on GA

Let us consider an operation of Hermitian conjugation t in gf,{q;
MT M|6‘A—>(€A 1, ma—ma — Z mA eA) (4)

We have the following two other equivalent definitions of this operation:

e . ﬁe‘l, if pis odd, e ,,,nﬁe_l , if gis even,
mt = J Er il e (5)

i —1 . . i —1 . .
e.pMey . if p is even, ep+1..nMe, g if g is odd.

The operation
(Ml, MQ) = <MIM2>() 2 0

is a (positive definite) scalar product. Using this scalar product we introduce inner
product space over the field of complex numbers (unitary space) in inq. We have
a norm

[IM|] := /(M, M) = /(M M), (6)
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Matrix representation of Qigq

Let us consider the following faithful representation (isomorphism) of the
complexified geometric algebra

Mat(22, C) if nis even,
: ¢ nll ' n—1 7
FiGpa = {Mat(2z,(C)69Mat(22,(C), if nis odd. @

Let us denote the size of the corresponding matrices by
N := 2[%1,

where square brackets mean taking the integer part. Note that we use
block-diagonal matrices in the cases n =1 mod 2.
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Let us present an explicit form of one 3’ of these representations of gﬁq.

Let us consider the case p = n, ¢ = 0. To obtain the matrix representation for
another signature with g # 0, we should multiply matrices 5’(e,),
a=p-+1,...,n by imaginary unit i.

We have 3'(e) = Iy and 5'(€a,a,...a,) = B'(€a,)3'(€2,) - -~ (€2 )-

In the case n =1, we take §'(e1) = diag(1, —1).

Suppose we know 3, := '(e;), a=1,...,n for some fixed odd n =2k + 1. Then
for n = 2k + 2, we take the same '(e,), a=1,...,2k+ 1, and

) |

B(e;) = ( v 5% ) a=1,...,2k+2,

5/(62k+2) = ( /0

—
Oz

N[z

For n = 2k + 3, we take

and

ik+1ar .. Q!
5’(€2k+3)_<l+/810 Pokr2 0 )

_ik+1ﬁi T ﬁék+2
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Note that for this matrix representation we have

(8'(ea))! = maaf'(ea),  a=1,....n,

where T is the Hermitian transpose of a matrix. Using the linearity, we get that
Hermitian conjugation of matrix is consistent with Hermitian conjugation of
corresponding multivector:

g'(MY) = (B(M),  MegS, (8)

Note that the same is not true for an arbitrary matrix representations 3 of the
form (7). It is true the matrix representations v = T 1’ T obtained from 3’
using the matrix T such that 71T = /.
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-
Unitary Lie groups in GA

Let us consider the group
UGy, ={Me Gy, MM = e}, (9)

which we call a unitary group in G5 .. Note that all the basis elements es of G, 4
belong to this group by the definition.

Using (7) and (8), we get the following isomorphisms to the classical matrix
unitary groups:

U(22) if nis even,
UGS, ~ oo ot 10
Ir.a {U(2 7 )x U(2%7), if nis odd, (10)
where
U(k) = {A € Mat(k,C), ATA=1}. (11)

Dmitry Shirokov (dm.shirokov@gmail.com) Amsterdam, 2024 9/26



o
Singular value decomposition (SVD)

Theorem

For an arbitrary A € C"™™, there exist matrices U € U(n) and V € U(m) such
that

A= UV (12)
where
Z:diag()\17)\2,...,)\k)7 k:min(n, m), R A, A, ..., Ak >0.

Note that choosing matrices U € U(n) and V € U(m), we can always arrange
diagonal elements of the matrix L in decreasing order \y > X\ > --- > A\ > 0.

v

Diagonal elements of the matrix X are called singular values, they are square roots
of eigenvalues of the matrices AAT or ATA. Columns of the matrices U and V are
eigenvectors of the matrices AAT and AT A respectively.
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Theorem (SVD in GA)

For an arbitrary multivector M € ggq, there exist multivectors U,V € Uggq,
where

UGS, ={Uegs, : UtU=e}, U= Ta(ea)™,
A
such that
M= Uz VT, (13)

where multivector © belongs to the subspace K € ng, which is a real span of a
set of N = 2["2*] fixed basis elements (3) of Q’Sq including the identity element e.

o
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Example

In the case ggo >~ Mat(2, C), we have

d@-(p 3 )oe-(5 %)

The matrices 5’(e) and 3'(ey1) are real and diagonal, we get the subspace

gler=( ] 5 )stem=( 5

K = span(e, e1).

Consider the multivector

M= (1+i)e+(1—i)er+ (1+i)ex+ (—1+i)er> € G5 We can choose

o)

l+l —1+i -1+ —1-— c
U= e e+ e € GG5 g, 14
2\[ 2\/5 1 NG 2 22 12 2,0 (14)
14 -1+ 1—i —1—i C
e+ + + e1n € GGy, 15
2\[ 2\[ €1 \[62 2\@ 12 2,0 ( )
UtU=ViV =e, M=UZVT, =2(e+e) € K=span(e,e1). (16)
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Determinant and characteristic polynomial in GA

We can introduce the notion of determinant

Det(M) :=det(B(M)) e R, M e G

p,q°

where 8 is (7), and the notion of characteristic polynomial

pu(A) = Det(Ae = M) = A" — CyA"™ — - = QoA = Gy € G g =R,

n+1
MegS,, N=2"=1 Cu=CupMeg =R, k=1,... N (17)

The following method based on the Faddeev—LeVerrier algorithm allows us to
recursively obtain basis-free formulas for all the characteristic coefficients Cix)s
k=1,...,N (17):

, M1y = M(My — Cuy), (18)
<M(k)>0, k=1,...,N. (19)

In this method, we obtain high coefficients from the lowest ones.
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The determinant is minus the last coefficient
Det(M) = —Cny = =My = U(Cnv-1) — M(n-1)) (20)
and has the property
Det(M; M) = Det(M;)Det(Ms), My, Mz € G5 . (21)
The inverse of a multivector M & ggq can be computed as

~Adj(M) Q-1 — Mn-1)

M7= D) = Dei(M)

Det(M) # 0. (22)
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N
Rank in GA

Let us introduce the notion of rank of a multivector M € QEq:

rank(M) := rank(8(M)) € {0,1,..., N}, (23)
where (3 is (7).
Lemma

The rank of multivector rank(M) (23) is well-defined, i.e. it does not depend on
the representation 3 (7).

Below we present another equivalent definition, which does not depend on the
matrix representation 3. We use the fact that rank is the number of nonzero
singular values in the SVD and Vieta formulas.
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Theorem

We have the following properties of the rank of arbitrary multivectors
My, My, Ms € GF :

rank(My U) = rank(UM;) = rank(M), V invertible U € ggq, (24)

rank(M; M,) < min(rank(My ), rank(Ma)), (25)

rank(/\/ll M2) + rank(/\/lz M3) S rank(l\/ll M2 M3) + rank(/\/lz), (26)

rank(My) + rank(Ms) < rank(M; M) + N. (27)
Theorem
We have

rank(M) = rank(M) = rank(M) = rank(M) (28)

= rank(MT) = rank(MTM) = rank(l\/lMJr)7 VM ¢ gﬁq. (29)
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Lemma

Suppose that a square matrix A € CN*N js diagonalizable. Then

rank(A) =N << Cpn #0; (30)
rank(A) = kE{l —1} = C(k)#o, CU):O,j:k+1,...,N;(31)
rank(A) = o A =0. (32)
Lemma
For an arbitrary multivector M € gp g we have
Cwm(MIM) =0 = Cu(M)=0, (33)
Cy(MIM)=0 = M=0o. (34)
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Theorem (Rank in GA)

Let us consider an arbitrary multivector M € ggq and T := MYM. We have

N, if Ciny (M) # 0,
N — 1, if C(N)(M) =0 and C(N_l)(T) 75 0,
N — if C(N)(M) = C(Nfl)(T) =0 and C(N,Q)(T) 7& 0
rank(/\/l) = 27 if C(N)(M) = C(N_l)(T) == C(3)(T) =0 and
Co)(T) #0,
17 if C(N)(M) = C(N,l)(T) == C(2)(T) =0 and
M 0,
0, if M = 0.
Amsterdam, 2024 18/26



Example
For an arbitrary M € Qg,q, n=p+qg=1, we have
2, if MM #0,
rank(M) =<1,  if MM =0and M # 0, (35)

0, it M =0.

Example

For an arbitrary M € ng, n=p+qg=2, we have

2, if MM #0,
rank(M) = 41 if MM =0 and M #£0, (36)
0, ifM=o0.
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Example

For an arbitrary M € G

rank(M) =

where T := MtM.

0,

bqr N =p+q=3, we have

ﬁMMMM#O

ﬁMMMM OmmTTT+TTT+TTT+???¢o
ﬁAMWMM TTT+TTT+777=+TTT 0 and
TT+TT+TT+TT+TT+TT#O

if MI\/II\/IM TTT+ TTT+ TTT+TTT =

= TT+ TT+TT+TT+TT+TT =0 and M #£0,
if M =0,
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Example

Let us consider the A-operation ((MyM)® # M{EMS; (MyMy)® # ME MY )

MA::Z(—l)%Wﬂ: Z (M) — Z (M.  (37)

k=0 k=0,1,2,3 mod 8 k=4,5,6,7 mod 8

For an arbitrary M € G

g N=p+tqg=4 we have (T := MTM)

4, if MM(MM)A # 0,

3, if /\/Il\~77(I\Aﬂl\~ﬂ) =0 and
TTT+ TTT + T(TT) - T(TT) #0,

vank(M) 2, if /\/II\/I(MM)A TTT+ TTT+ T(TT)A + T(TT)A =0
and TT+ TT+ TT+ TT+ TT+( )2 #0,

1, if I\/II\/I(MM) TTT+ TTT+T(TDA+T(TTA =

—TT+TT+TT+TT+TT+(TT)® =0and M+#0,
0, if M=0.
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The case of normal multivectors

We call a normal multivector M € ng a multivector with the property

MM = MMT. Hermitian multivectors Mt = M, anti-Hermitian multivectors
Mt = —M, unitary multivectors MM = e are the particular cases of normal
multivectors. For example, the basis elements e, are unitary by the definition.
Note that all unitary multivectors have rank equal to N.

Theorem
Let us consider a normal (MM = MM ) multivector M € g;‘;q. We have
v, iF oy (M) 0,
N — 17 if C(N)(M) =0 and C(N,l)(M) 75 0,
N -2 if C(N)(M) = C(N_l)(M) =0 and C(N_z)(M) 7& 0
rank(M) = ' .
27 if C(N)(M) = C(N,l)(/\/l) == C(3)(M) =0 and
C2(M) #0,
1, if Cny(M) = Cn—1)(M) = --- = C2y(M) =0, M # 0,
0, if M = 0. |
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Example

For an arbitrary normal (MtM = MMT) multivector M € G

have

rank(M)

o N=p+qg=3, we
n‘MMI\/IM;éO

if MMIVIM—Oand MMM—i—MI\/IM—FM/\/IM—i—MMM;éO
if MMMM MMM+MMM+MMM+MMM_Oand
MM—I—MM—}—MM—I—MM—i—MM—i—MM;éO

if MMMM MMM + MMM + | MMM + MMM =

:MM+MM+MM+MM+MM+MM:Oand M #£0,
if M =0.
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Example
For an arbitrary normal (MTM = MMT) multivector M € gfq,
have
4, it MM(MIR)® #0,
. if M/\j/\l(/\//\ll\ﬁ) =0and
MMM + MMM + MV + MDA 0,
k()= 12 M/\~71(£7I/\7I)AA: M/\~77~I\7I +~1VIAA~7’A7I;+1V’(A7”\:”)~A
mdMM+MM+MM+MM+MM+MM@
L, if MM(MM)® = MMM + MMM + M(MM)*
= MM + MM + MM + MM + MM + (MM)~
0, fM=0.

n=p+qg=4, we

+ M(RIRYA
£0,

+ M(MIRA =
=0and M #0,

=0
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Conclusions

@ We implement the notion of rank of multivector in complexified Clifford
geometric algebras without using the corresponding matrix representations.
Theorem involves only operations in geometric algebras.

@ We use natural implementations of SVD, determinant, and characteristic
polynomial in GA without using the corresponding matrix representations.

@ Note that the results of this work are valid not only for complexified Clifford
geometric algebras, but also for real Clifford geometric algebras, since we can
use the same matrix representations in the real case (but these matrix
representations will have non-minimal dimension in this case).

@ New explicit formulas for the rank in the cases of dimensions 3 and 4 can be
used in various applications of geometric algebras in physics, engineering, and
computer science.
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