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The four-equation model: no volume fraction Eq.
Common velocity, common temperature and equal pressures:
S. Le Martelot, R. Saurel, B. Nkonga, Towards the direct numerical simulation of
nucleate boiling flows, Int. J. Multiphase Flow 66, 62–78 (2014).
R. Saurel, P. Boivin, O. Le Métayer, A general formulation for cavitating, boiling
and evaporating flows, Comput. Fluids 128, 53–64 (2016).

Our paper containing the results of the report:
A. Zlotnik, T. Lomonosov. On a doubly reduced model for dynamics of
heterogeneous mixtures of stiffened gases, its regularizations and their
implementations // Chaos. 2023. Vol. 33. No. 11. Article 113128.

А.А. Злотник, Т.А. Ломоносов Сочи 9-15.09.2024 2 / 18



The four-equation system of PDEs for the heterogeneous one-velocity
and one-temperature compressible binary mixture consists of the balance
PDEs for the mass of components, total momentum and total energy

∂t(αkrk)+div(αkrku) = 0, k = 1,2, (1)

∂t(ρu)+div(ρu⊗u)+∇p = divΠ
NS +ρf , (2)

∂t(
1
2 ρ|u|2 +ρε)+div

(
(1

2 ρ|u|2 +ρε + p)u
)
= div(−qF +Π

NSu)+ρu ·f .
(3)

Here the main sought functions are the density rk > 0 and the volume
fraction 0 < αk < 1 of the heterogeneous component, k = 1,2, the common
velocity u and absolute temperature θ > 0 of the mixture. They depend on
x = (x1, . . . ,xn) ∈ Ω and t ⩾ 0, where Ω is a domain in Rn, n = 1,2,3.
Hereafter vector-functions are written in bold,
div = ∇·, ∇ = (∂1, . . . ,∂n), ∂t = ∂/∂ t and ∂i = ∂/∂xi.
The symbols ⊗ and · correspond to the tensor and scalar products of
vectors, the tensor divergence is taken with respect to its first index.
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The following additional relations are used

⟨αk⟩ := α1 +α2 = 1, ρ = ⟨αkrk⟩, ρε = ⟨αkrkεk(rk,θ)⟩, (4)

p = p1(r1,θ) = p2(r2,θ)> 0, (5)

where ⟨·⟩ means the summation over index k = 1,2,
pk(rk,θ) and εk = εk(rk,θ) are the pressure and specific internal energy of
the kth component (k = 1,2), ρ and ε are the density and specific internal
energy of the mixture, and p is the common pressure of the components.
In particular, Eq. (5) means that the pressures pk of the components are
equal to each other, and this is the additional algebraic equation to PDEs
(1)-(3) and formula ⟨αk⟩= 1 that is required to define all the sought
functions listed above.
We apply the stiffened gas equations of state in the well-known form

pk(rk,θ) = Rkrkθ − p∗k, εk(rk,θ) = cV kθ +
p∗k

rk
+ ε0k, (6)

Rk > 0, cV k > 0, p∗k ⩾ 0 and ε0k are given physical constants, k = 1,2. Also
Rk = (γk −1)cV k, where γk > 1; let cpk = γkcV k.
The perfect polytropic gas case corresponds to p∗k = ε0k = 0.
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The classical Navier-Stokes viscosity tensor and the Fourier heat flux

Π
NS = µ

(
∇u+(∇u)T )+ (

λ − 2
3 µ

)
(divu)I, −qF = κ∇θ , (7)

where µ ⩾ 0, λ ⩾ 0 and κ ⩾ 0 are the total viscosity and heat conductivity
coefficients, ∇u= {∂iu j}n

i, j=1 and I is the n-th order unit tensor. For
µ = λ = 0 and κ = 0, these terms vanish.
Also f is the given density of body forces.
We omit the phase transfer terms here but add the Navier-Stokes ones.

We define the alternative density ρk = αkrk of the k-th component.
Consider the following relations

ρ = ⟨ρk⟩, σ
(k) = σ

(k)(ρ1,ρ2) =
Rkρk

cV ρ
> 0, ⟨σ (k)⟩= R

cV
= γ −1, (8)

ρR = ⟨ρkRk⟩, ρcV = ⟨ρkcV k⟩.
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For p, the quadratic equation holds

p2 −bp− c = 0, (9)

with the coefficients

b = ⟨σ (k)(ρ(ε − ε0)− p∗k)− p∗k⟩, (10)

c = σ
(1)(ρ(ε − ε0)− p∗1)p∗2 +σ

(2)(ρ(ε − ε0)− p∗2)p∗1 − p∗1 p∗2

= (σ (1)p∗2 +σ
(2)p∗1)ρ(ε − ε0)− γ p∗1 p∗2. (11)

Let d := b2 +4c be its discriminant. For d > 0, the quadratic Eq. (9) has
the roots

p± = p±(ρ1,ρ2,ρε) = 1
2(b±

√
d), p− < p+. (12)

But for p∗1 p∗2 ̸= 0 (this case arises in some applications), the property
d > 0 and the correct choice of the physical root are not obvious a priori
and are analyzed below.
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Proposition 1

Let ∆∗ := p∗2 − p∗1. The following formulas hold

b = p++ p−, c =−p+p− ⩾ 0, (13)

where

p+ = ⟨αk pk⟩= Rρθ −⟨αk p∗k⟩> 0, p− =−
(

α1 p∗2 +α2 p∗1 +
α1α2

cV ρθ
∆

2
∗

)
⩽ 0.

(14)

Consequently, d > 0, thus, these p± and those given by formula (12) are
the same.

This Proposition guarantees that p+ is the physical root and p− is the
parasitic one.
The found formula for p− is also of interest since it allows to prove
additional results.
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The balance PDEs for the mass, kinetic and internal energies of the mixture

∂tρ +div(ρu) = 0, (15)
1
2 ∂t(ρ|u|2)+ 1

2 div
(
ρ|u|2u

)
+u ·∇p = (divΠ

NS) ·u+ρf ·u,

∂t(ρε)+div(ρεu)+ pdivu= div(−qF)+Π
NS : ∇u+Q (16)

are sequentially derived in a standard manner. Here : denotes the scalar
product of tensors. In particular, Eq. (15) arises by applying ⟨·⟩ to Eqs. (1).

Proposition 2

The squared speed of sound and the balance PDE for p+ hold

c2
s := ∂ρ p++

p+
ρ2 ∂ε p+ =

γ(p++ p∗1)(p++ p∗2)

ρ
√

d
> 0, (17)

∂t p++u ·∇p++ρc2
s divu=

c2
s

γcV θ

(
div(−qF)+Π

NS : ∇u+Q
)
, (18)

where the derivatives ∂ρ and ∂ε are taken in assumption that ε0 and σ (k),
k = 1,2, are constant in (10)-(11) following the literature.
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The quasi-homogeneous four-equation statement. The balance PDEs
for the mass of components, total momentum and total energy

∂tρk +div(ρku) = 0, k = 1,2, (19)

∂t(ρu)+div(ρu⊗u)+∇p = divΠ
NS +ρf , (20)

∂t
(1

2 ρ|u|2 +ρε
)
+div

(
(1

2 ρ|u|2 +ρε + p)u
)

= div(−qF +Π
NSu)+ρu ·f . (21)

Here the main sought functions are the alternative densities ρk > 0,
k = 1, 2, the velocity u and the specific internal energy ε of the mixture.
Also ρ = ⟨ρk⟩, but formulas (4) for ρk and ρε and (6) for pk are not in use.
The pressure p and temperature θ are given by the formulas

p(ρ1,ρ2,ε) = p+ =
1
2
(b+

√
d), θ(ρ1,ρ2,ε) =

ρ(ε − ε0)+ p
γcV ρ

. (22)

Recall that here d = b2 +4c, with b = b(ρ1,ρ2,ε) and c = c(ρ1,ρ2,ε) given
in definitions (10), (11) and (8).
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We emphasize that this system does not contain αk and rk = ρk/αk,
k = 1,2, although they can be computed a posteriori, we have

αk =
Rkρkθ

p++ p∗k
, k = 1,2. (23)

This formula and the property ⟨αk⟩= 1 imply an alternative formula for θ :

θ =
〈 Rkρk

p++ p∗k

〉−1
, (24)

that we apply in our computations below. For computing rk, the formula
rk = (p++ p∗k)/(Rkθ) seems to be more reliable.
Importantly, the quasi-homogeneous form is equivalent to the original
heterogeneous one. In particular, formulas (23) and (24) imply that

⟨αk⟩= 1, pk = Rkrkθ − p∗k = Rk
ρk

αk
θ − p∗k = p+, k = 1,2,

see the first equation of state (6), and lead to Eqs. (5).
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Regularized systems of PDEs for the dynamics of quasi-homogeneous

mixtures of stiffened gases

Now we accomplish the formal regularization procedure first suggested in 1

for the single-component gas. In the balance PDEs for the mass of
components (19), the total momentum (20) and the total energy of the
mixture (21), we accomplish respectively the following changes

ρku → ρku+ τ∂t(ρku),

div(ρu⊗u)+∇p−ρf → div(ρu⊗u+ τ∂t(ρu⊗u))

+∇(p+ τ∂t p)− (ρ + τ∂tρ)f ,

(E + p)u → (E + p)u+ τ∂t
(
(E + p)u

)
,

ρu ·f →
(
ρu+ τ∂t(ρu)

)
·f ,

where E = (1/2)ρ|u|2 +ρε is the total mixture energy and τ > 0 is a
regularization parameter which can depend on all the sought functions.

1Злотник А. А. О построении квазигазодинамических систем уравнений и
баротропной системе с потенциальной массовой силой // Матем. моделир. 2012.
Т. 24. № 4. С. 65-79.
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These changes lead from the original Navier-Stokes-Fourier-type system
(19)-(21) to its following regularized QGD version

∂tρk +div
(
ρk(u−wk)

)
= 0, k = 1,2,

∂t(ρu)+div(ρ(u−w)⊗u)+∇p = div(ΠNS +Π
τ)+

(
ρ − τ div(ρu)

)
f ,

∂tE +div
(
(E + p)(u−w)

)
= div(−qF −qτ +(ΠNS +Π

τ)u)+ρ(u−w) ·f ,

the unknown functions are the same. The regularizing velocities

wk :=
τ

ρk
div(ρku)u+ ŵ, ŵ = τ

(
(u ·∇)u+

1
ρ

∇p−f
)
, (25)

w :=
〈

ρk

ρ
wk

〉
=

τ

ρ
div(ρu⊗u+∇p−ρf) =

τ

ρ
div(ρu)u+ ŵ, (26)

with k = 1,2, the regularizing viscous stress and heat flux

Π
τ := ρu⊗ ŵ+ τ

(
u ·∇p+ρc2

s divu
)
I, (27)

−qτ := τ

(
u ·

(
ρ∇ε − p

ρ
∇ρ

))
u. (28)
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Finite-difference scheme

Further, we consider the 1D case with Ω = (−X ,X) and define the main
and auxiliary uniform meshes

ω̄h = {xi =−X + ih; 0 ⩽ i ⩽ N},

ω
∗
h = {xi+1/2 =−X +(i+0.5)h; 0 ⩽ i ⩽ N −1},

on [−X ,X ], with the step h = 2X/N. Let ωh = ω̄h\{−X ,X}.
We also define the nonuniform mesh ω̄∆t = {t0 = 0 < t1 < .. . < tm = t f in} in
time, with the steps ∆tm = tm+1 − tm. Let ω̌∆t = ω̄∆t\{t f in}.
Denote by H(ω) the space of functions given on a mesh ω .
For v ∈ H(ω̄h), w ∈ H(ω∗

h ) and y ∈ H(ω̄τ), we introduce the averages and
difference quotients

[v]i+1/2 = 0.5(vi + vi+1), vi+1/2 =
vi+1 − vi

h
,

[w]∗i = 0.5(wi−1/2 +wi+1/2), δ
∗wi =

wi+1/2 −wi−1/2

h
, δtym =

ym+1 − ym

∆tm
,

where vi = v(xi), wi+1/2 = w(xi+1/2) and ym = y(tm).
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For the regularized QGD balance PDEs in the 1D case, we construct the
explicit two-level in time and symmetric three-point in space discrete
balance Eqs. without limiters for the mass of the components and the
momentum and total energy of the gas mixture

δtρk +δ
∗([ρk]([u]−wk)

)
= 0, k = 1,2, (29)

δt(ρu)+δ
∗([ρ]([u]−w)[u]+ [p]

)
= δ

∗
Π, (30)

δt
(1

2 ρu2 +ρε
)
+δ

∗{(1
2 [ρ]u−u++[ρε]+ [p]

)
([u]−w)− 1

4 h2(δ p)δu
}

= δ
∗(−q+Π[u])+ [Q]∗ (31)

on ωh × ω̌∆t . The main sought functions ρ1 > 0,ρ2 > 0, u, ε (in fact, ρε),
and the functions p and θ , are defined on the main mesh ω̄h × ω̄∆t .
Also p and θ (in the q-term) are given by the first formula (22) and formula
(24), with d = b2 +4c and their coefficients defined by (8), (10) and (11).
In Eq. (31), the nonstandard term u−u+ (like the geometric mean for u2)
instead of [u2] or [u]2 and the additional term −(1/4)h2(δ p)δu allows us to
ensure a more natural form of the important discrete balance equation for
the mixture internal energy without the spatial mesh imbalances.
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We discretize the regularizing velocities (25)-(26) in the form

wk =
[τ]

[ρk]
[u]δ (ρku)+ ŵ, ŵ =

[τ]

[ρ]
([ρ][u]δu+δ p), (32)

w =
〈 [ρk]

[ρ]
wk

〉
=

[τ]

[ρ]
[u]δ (ρu)+ ŵ (33)

with k = 1,2 and the viscous stress and heat flux as follows

Π = νδu+[u][ρ]ŵ+[τ]
(
[u]δ p+[ρc2

s ]δu
)
,

−q = κδθ +[τ]
{(

δ (ρε)− [ρε]+ [p]
[ρ]

δρ

)
[u]2

}
.

Here the squared speed of sound c2
s is given by the second formula in (17),

and cV and γ are introduced above.
The functions wk, ŵ, w, Π, ν = (4/3)µ +λ , q and κ are defined on the
auxiliary mesh ω∗

h × ω̄∆t , but τ is defined on ω̄h × ω̄∆t .
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We take τ , ν and κ in the form

τ =
ah
cs
, ν = aS[τ][p], κ = aPr[τ][cp][p]

that is formally analogous to the single-component gas case.
So τ is h-dependent, ν and κ are artificial viscosity coefficients, with the
parameter a > 0, the Schmidt and inverse Prandtl numbers for the mixture
aS ⩾ 0 and aPr > 0 used as adjusting numerical parameters.
For the QGD regularization, in many tests, aS = 0 is possible.

The initial data (ρ1,ρ2,u,ρε) = (ρ0
1 ,ρ

0
2 ,u

0,(ρε)0) (or equivalent ones) are
given on ω̄h.
Below the time steps are chosen automatically according to the formulas

∆tm =
βh

maxi(cm
si + |um

i |)
, 0 ⩽ m < m−1,

∆tm−1 = t f in − tm−1 ⩽
βh

maxi(cm−1
si + |um−1

i |)
,

where β > 0 is the Courant-type parameter.
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Test B. Water-to-air shock tube problem

Таблица 1: Stiffened gas parameters
Substance γ cV , J/(kg K) p∗, Pa ε0, J/kg

Air 1.4 720 0 0
Water 2.8 1495 8.5 ·108 0

In this test 2, we have a 10 m long tube separated into two halves, both of
which contain a mixture of air and water but in different proportions, with

(p0,u0,θ0) =

{
(2 ·107 Pa,0 m/s,308.15 K), −5 ⩽ x < 0

(107 Pa,0 m/s,308.15 K), 0 < x ⩽ 5
,

and we have α1 = 0.25 in the left half and α1 = 0.75 in the right half.
Notice that a = 2 is taken, thus, a > 1.

2Q. Li, S. Fu, A gas-kinetic BGK scheme for gas-water flow, Comput. Math. Appl.
61, 3639–3652 (2011).
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Рис. 1: Numerical results for water-to-air shock tube (test B)
for N = 500 (dark magenta), 2500 (blue), a = 2 and β = 0.1, t f in = 6 ms
(the QGD regularization)
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