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@ A reduced system of PDEs for the dynamics of heterogeneous mixtures
of stiffened gases and its further reduction

© Regularized systems of PDEs for the dynamics of quasi-homogeneous
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© Finite-difference schemes for the 1D regularized systems of PDes

@ Numerical experiments
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The four-equation model: no volume fraction Eq.

Common velocity, common temperature and equal pressures:

S. Le Martelot, R. Saurel, B. Nkonga, Towards the direct numerical simulation of
nucleate boiling flows, Int. J. Multiphase Flow 66, 62-78 (2014).

R. Saurel, P. Boivin, O. Le Métayer, A general formulation for cavitating, boiling
and evaporating flows, Comput. Fluids 128, 53-64 (2016).

Our paper containing the results of the report:

A. Zlotnik, T. Lomonosov. On a doubly reduced model for dynamics of
heterogeneous mixtures of stiffened gases, its regularizations and their
implementations // Chaos. 2023. Vol. 33. No. 11. Article 113128.

T ——



The four-equation system of PDEs for the heterogeneous one-velocity
and one-temperature compressible binary mixture consists of the balance
PDEs for the mass of components, total momentum and total energy

(9,(Oékl”k) —i—div(akrku) =0, k=1,2, (1)
d(pu) +div(pu®@u)+Vp=divII' +p £, (2)

di(3plul’+pe) +div ((3plul*+pe+ p)u) = div(—¢" + 11" u) + pu- f.
(3)

Here the main sought functions are the density r, > 0 and the volume
fraction 0 < o < 1 of the heterogeneous component, k = 1,2, the common
velocity u and absolute temperature 6 > 0 of the mixture. They depend on
x=(x1,...,x,) €Q and t >0, where Q is a domain in R", n=1,2,3.
Hereafter vector-functions are written in bold,

div=V-, V=(d,...,d,), d, =39/dt and J; = d/dx;.

The symbols ® and - correspond to the tensor and scalar products of
vectors, the tensor divergence is taken with respect to its first index.
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The following additional relations are used
(Otk> = t+mp=1, p= <OCkI’k>, pE= <Otkrk8k(rk,9)>7 (4)
p:pl(rlve)ZPZ(r276)>07 (5)

where (-) means the summation over index k = 1,2,

Pi(ri,0) and & = &(ry, 0) are the pressure and specific internal energy of
the kth component (k= 1,2), p and € are the density and specific internal
energy of the mixture, and p is the common pressure of the components.
In particular, Eq. (5) means that the pressures p; of the components are
equal to each other, and this is the additional algebraic equation to PDEs
(1)-(3) and formula (o) =1 that is required to define all the sought
functions listed above.

We apply the stiffened gas equations of state in the well-known form

k
Pi(rk,0) = R0 — puk, € (1, 0) ZCVk9+%+80k, (6)

Ry >0, ¢y >0, pu >0 and gy, are given physical constants, k = 1,2. Also
R, = (’}’k — I)CVk, where Ye > 1; let Cpk = YiCvi-
The perfect polytropic gas case corresponds to p.; = &y = 0.
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The classical Navier-Stokes viscosity tensor and the Fourier heat flux
MY = p(Vu+ (Vu)") + (2 = 2u) (diva)l, —¢" =3Ve,  (7)

where 1 >0, A >0 and 5 > 0 are the total viscosity and heat conductivity
coefficients, Vu = {du;},_; and Lis the n-th order unit tensor. For
uw=A=0 and » =0, these terms vanish.

Also f is the given density of body forces.

We omit the phase transfer terms here but add the Navier-Stokes ones.

We define the alternative density py = airy of the k-th component.
Consider the following relations

p=(p), o®=0W(pp)=RP oo sty =R _y | (g
cyp Cy

PR = (piRy), pcv = (prcvi)-
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For p, the quadratic equation holds
p*—bp—c=0, (9)
with the coefficients
b= (oW (p(e—&) = put) = pr) (10)
c=0W(p(e —e0) — pu)pa+ 0P (p(e — &) — p2)pui — pupa
= (6Wpaa+0Pp.)p(e— &) — Ypape (11)

Let d := b +4c be its discriminant. For d > 0, the quadratic Eq. (9) has
the roots

pizpi(PbPz,PS):%(bi\/g% pP-<p+- (12)

But for p.1p.«2 # 0 (this case arises in some applications), the property
d > 0 and the correct choice of the physical root are not obvious a priori
and are analyzed below.
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Proposition 1

Let A, := p.2 — ps1. The following formulas hold

b=pi+p-, c=—pip- >0, (13)
where
P+ = (0kpr) = RpO — (qpsi) >0, p_ = — (061]7*2 + 0 py1 + :‘1;% AE) <0.
T )

Consequently, d > 0, thus, these py and those given by formula (12) are
the same.

This Proposition guarantees that p, is the physical root and p_ is the
parasitic one.

The found formula for p_ is also of interest since it allows to prove
additional results.
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The balance PDEs for the mass, kinetic and internal energies of the mixture
o;p +div(pu) =0, (15)

Lo (plul?) + Ldiv (plul*u) +u-Vp = (divIIY) - u+pf - u,
d,(pe) +div(peu) + pdivu = div(—q" ) + IV : Vu + Q (16)

are sequentially derived in a standard manner. Here : denotes the scalar
product of tensors. In particular, Eq. (15) arises by applying (-) to Egs. (1).

Proposition 2

The squared speed of sound and the balance PDE for p hold

2. P+, _ Y +pa)(pi+pa)
¢ :=0dpp+ + Fa&'p-‘r = ovd >0, (17)
2
dhps +u-Vp. +pcdivu = YCCSG (div(—g")+T1" : Vu+0),  (18)
\%

where the derivatives d, and . are taken in assumption that & and oW,
k=1,2, are constant in (10)-(11) following the literature.

A.A. 3nothuk, T.A. JlomoHocos Coun 9-15.09.2024 8/18



The quasi-homogeneous four-equation statement. The balance PDEs
for the mass of components, total momentum and total energy

Opr+div(pru) =0, k=1,2, (19)
d(pu)+div(pu@u)+Vp =divII™ +p f, (20)
9 (Lplul® +pe) +div ((1plul® + pe + p)u)

= div(—q" +TT"u) 4+ pu- f. (21)

Here the main sought functions are the alternative densities p; > 0,

k=1, 2, the velocity u and the specific internal energy € of the mixture.
Also p = (py), but formulas (4) for px and pe and (6) for py are not in use.
The pressure p and temperature 6 are given by the formulas

p(e—¢&)+p

22
Yevp (22)

1
p(p17p278) =P+ = E(b+ \/;l)v 9(p17p278) =
Recall that here d = b? +4c, with b = b(py,p2,€) and ¢ = c(p1, p2,€) given
in definitions (10), (11) and (8).
Coun 9-15.09.2024 9/18



We emphasize that this system does not contain o and ry = pi/ o,
k=1,2, although they can be computed a posteriori, we have

Ripi0

= ——, k=1,2. 23
D+ + Pk ( )

This formula and the property (o) =1 imply an alternative formula for 6:

o= ( MPe N (24)

P+ +p*k

that we apply in our computations below. For computing ry, the formula
ri = (p+ + psr)/(Rr6) seems to be more reliable.

Importantly, the quasi-homogeneous form is equivalent to the original
heterogeneous one. In particular, formulas (23) and (24) imply that

<(Xk> = 17 Pk :erke_p*k:Rk%ie_p*k:era k= 1725

see the first equation of state (6), and lead to Egs. (5).
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Regularized systems of PDEs for the dynamics of quasi-homogeneous
mixtures of stiffened gases

Now we accomplish the formal regularization procedure first suggested in !
for the single-component gas. In the balance PDEs for the mass of

components (19), the total momentum (20) and the total energy of the
mixture (21), we accomplish respectively the following changes

pru — pru+ T (pru),
divijpu®u)+Vp—pf — div(pu®@u+ 19 (pu®u))
+V(p+19p)—(p+7dp)f,
(E4+p)u — (E4+p)u+19((E+p)u),
pu-f = (pu+1d(pu))-f,

where E (l/2)p|u\2—i—p8 is the total mixture energy and 7 >0 is a

can depend on all the sought functions.
1350THuK A. A. O NOCTPOEHMM KBAa3Mra304NHAMUYECKIX CUCTEM ypaBHEHUIA 1

GapoTporHoii cucTeme ¢ noTeHUManbHO Maccosoii cunoii // Matem. mogenup. 2012.
T. 24. Ne 4. C. 65-79.
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These changes lead from the original Navier-Stokes-Fourier-type system
(19)-(21) to its following regularized QGD version

Ohpr+div (pr(u —wy)) =0, k=1,2,
o (pw) +div(p(u —w) @u) + Vp = div(ITVS +IT°) + (p —zdiv(pu)) f,
OE+div ((E+p)(u—w)) =div(—¢" —q"+ ([T +TI")u) + p(u—w) - f,

the unknown functions are the same. The regularizing velocities

1
w = div(peuut @, @ =1((u-Vyut V- ), (@)

Px
— (Pr N = i Cof) = di n
w = < > wk> =5 divijpu@u+Vp—pf) ’ div(jpu)u+w, (26)
with k = 1,2, the regularizing viscous stress and heat flux
" := pu®@w+7(u-Vp+pcidivu)L, (27)
—q"=1(u- _r
q": T(u (pVe pr))u. (28)
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Finite-difference scheme

Further, we consider the 1D case with Q = (—X,X) and define the main
and auxiliary uniform meshes

@h:{xi:—X+ih;O<i<N},
of = {xi1p= X+ (i+0.5)m0<i<N—-1},
on [—X,X], with the step h =2X/N. Let w, = @,\{—X,X}.
We also define the nonuniform mesh @ = {tp=0<t; < ... <ty = tfin} iN
time, with the steps At,, = t,1 — . Let @Y = (I)A’\{tf,-n}.
Denote by H(w) the space of functions given on a mesh .

Forve H(@,), w € H(w;) and y € H(®"), we introduce the averages and
difference quotients

Vil — Vi
WVig12=0.5(vi+Vit1), Vigip= %,
. . Wir1/2 —Wio1)2 oy ym
Wlf =0.5Wis1p+Wig12), O'wi=—"—"—""=, §"="———,
h Aty
where v; = v(x;), wi 12 = w(xi11/2) and y" = y(tn).
Coun 9-15.00.2024  13/18



For the regularized QGD balance PDEs in the 1D case, we construct the
explicit two-level in time and symmetric three-point in space discrete
balance Eqgs. without limiters for the mass of the components and the
momentum and total energy of the gas mixture

8,0+ 8" (Ioul (1] — w)) =0, k=12, (20)
8 (pu) + 8" ([p)([u] —w)lu] + [p]) = (30)

5, (4pi +pe) + 8" (Llplu_u- + [pe] + [p])m - L (8p)du}
= 5°(~q+T1[u)) + (O] (31)

on @y, x ®. The main sought functions p; > 0,p, >0, u, € (in fact, pg),
and the functions p and 0, are defined on the main mesh @, x @*'.

Also p and 6 (in the g-term) are given by the first formula (22) and formula
(24), with d = b* +4c and their coefficients defined by (8), (10) and (11).
In Eq. (31), the nonstandard term u_u. (like the geometric mean for u?)
instead of [u?] or [u]? and the additional term —(1/4)h?(8p)du allows us to
ensure a more natural form of the important discrete balance equation for
the mixture internal energy without the spatial mesh imbalances.

TR T e



We discretize the regularizing velocities (25)-(26) in the form

e = [Efj] W8 (peu) + %, = [;]] ([p)ldu-+ 5p),
W= <[{;k]]wk> - [[;]] W] 8 (pu) + i

with kK = 1,2 and the viscous stress and heat flux as follows

= vu-+ [u] [p]+ (2] (] p + [pel|u).

—q =56 +[5){ (8(pe) - W@) [},

Here the squared speed of sound ¢? is given by the second formula in (17),

and ¢y and v are introduced above.

The functions wy, w, w, I, v = (4/3)u 4+ A, g and s are defined on the

auxiliary mesh @; x @, but 7 is defined on @, x ®*'.

TSR T
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We take 7, v and s in the form
B ah

T . v=ag[t|[p], »=ap[7][c)][P]

Cs

that is formally analogous to the single-component gas case.

So 7 is h-dependent, v and s are artificial viscosity coefficients, with the
parameter a > 0, the Schmidt and inverse Prandtl numbers for the mixture
as > 0 and ap, > 0 used as adjusting numerical parameters.

For the QGD regularization, in many tests, as = 0 is possible.

The initial data (p1,p2,u,p€) = (p?,p?,u°, (pe)?) (or equivalent ones) are
given on .
Below the time steps are chosen automatically according to the formulas

h
Aty = P

= 0<m<m—1
max; (¢ +|uf"|)” ’

Bh

Atz | = tfin ——1 < — —
" fin i ls max; (" 4 W)

where 8 > 0 is the Courant-type parameter.
Coun 9-15.09.2024  16/18



Test B. Water-to-air shock tube problem

Tabnnua 1: Stiffened gas parameters
Substance v ¢y, J/(kg K) p., Pa &, J/kg

Air 1.4 720 0 0
Water 2.8 1495 8.5-108 0

In this test 2, we have a 10 m long tube separated into two halves, both of
which contain a mixture of air and water but in different proportions, with

(2-107 Pa,0 m/s,308.15 K), —5<x<0

Y ’9 = ’
(po,uo,60) { (107 Pa,0 m/s,308.15 K), 0<x<5

and we have o = 0.25 in the left half and oy =0.75 in the right half.
Notice that a = 2 is taken, thus, a > 1.

2Q. Li, S. Fu, A gas-kinetic BGK scheme for gas-water flow, Comput. Math. Appl.
61, 3639-3652 (2011).
o or5100:2034 T /18
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- i F
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12 B Fi [l 3,07 A]
1 05 le, l\\\ 3,06 d
0,8 0 3,05
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Puc. 1: Numerical results for water-to-air shock tube (test B)
for N =500 (dark magenta), 2500 (blue), a =2 and B =0.1, t5;, =6 ms
(the QGD regularization)
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