• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Recent Advances of the Russian Operations Research Society

Под науч. редакцией: F. T. Aleskerov, А. А. Васин.

Cambridge: Cambridge Scholars Publishing, 2020.

Stability of implicit difference schemes for a linearized hyperbolic quasi-gasdynamic system of equations
В печати

Zlotnik A.A., Chetverushkin B.

Differential Equations. 2020. Vol. 56. No. 7. P. 910-922.

Глава в книге
Belief Functions for the Importance Assessment in Multiplex Networks

Lepskiy A., Meshcheryakova N.

In bk.: Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. Vol. 1238. Prt. 2. Cham: Springer, 2020. P. 283-296.

Matrix-vector approach to construct generalized centrality indices in networks

Aleskerov F. T., Yakuba V. I.

Математические методы анализа решений в экономике, бизнесе и политике. WP7. Высшая школа экономики, 2020. No. 2323.

Состоялось очередное заседание научного семинара "Политическая экономика"

Докладчик:  Alexei Savvateev (NES) 
Authors: A.Savvateev and S.Weber
Consider the following (almost classical) problem. We are given a continuous (nonatomic) demand for certain excludable public good ("club good''), which is distributed over a convex and compact subset of a normed finite-dimentional vector space. Any partition of consumers into several groups (each group is comprised of consumers using one and the same variety of that good) is a feasible outcome.

Transportation costs are given by a metric function generated by a certain norm on the underlying vector space. With a few number of varieties, the monetary cost is
lower while transportation is high; when there are many varieties to be produced, vice versa. Therefore, a trade-off arises.

A partition is called migration-proof if no consumer has incentive to change his group. (When changing his group, a given consumer also changes cost sharing mechanism, from the one adopted in his home group, to that in the group-to-be.) We will report on recent results in the above problem, which can be treated as Tiebout's (1956) inheritance.

Заседание состоялось 29.10.2013 в 18.15 по адресу: г. Москва, улица Шаболовка, дом 26, корпус 4, аудитория 4322.