• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Статья
Fast Fourier solvers for the tensor product high-order FEM for a Poisson type equation

Zlotnik A.A., Zlotnik I.A.

Computational Mathematics and Mathematical Physics. 2020. Vol. 60. No. 2. P. 240-257.

Глава в книге
Innovation Development: Review and Estimation of Heterogeneity

Myachin A. L.

In bk.: Proceedings of the 20th International Conference on Group Decision and Negotiation. Ryerson University, 2020. P. 22.1-22.10.

Препринт
Matrix-vector approach to construct generalized centrality indices in networks

Aleskerov F. T., Yakuba V. I.

Математические методы анализа решений в экономике, бизнесе и политике. WP7. Высшая школа экономики, 2020. No. 2323.

Состоялось очередное заседание научного семинара "Политическая экономика"

Colin Rowat - "Stable sets in three agent pillage games"

Краткая аннотация доклада:

Jordan [2006, “Pillage and property”, JET] characterises stable sets for three special cases of ‘pillage games’. For anonymous, three agent pillage games we show that: when the core is non-empty, it must take one of five forms; all such pillage games with an empty core represent the same dominance relation; when a stable set exists, and the game also satisfies a continuity and a responsiveness assumption, it is unique and contains no more than 15 elements. This result uses a three step procedure: first, if a single agent can defend all of the resources against the other two, these allocations belong to the stable set; dominance is then transitive on the loci of allocations on which the most powerful agent can, with any ally, dominate the third, adding the maximal elements of this set to the stable set; finally, if any allocations remain undominated or not included, the game over the remaining allocations is equivalent to the ‘majority pillage game’, which has a unique stable set [Jordan and Obadia, 2004, “Stable sets in majority pillage games”, mimeo]. Non-existence always reflects conditions on the loci of allocations along which the most powerful agent needs an ally. The analysis unifies the results in Jordan [2006] when n = 3. Key words: pillage, cooperative game theory, core, stable sets, algorithm

Рабочий язык: английский

Заседание состоялось в 18.30 по адресу: 101990, Москва, Покровский бульвар, 11, Высшая школа экономики, корпус Б, аудитория Д-316.

Руководители семинара:

к.э.н., Захаров Алексей Владимирович (ГУ ВШЭ),

к.ф-м.н., Сонин Константин Исаакович (РЭШ)