Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
109028, Москва, Покровский бульвар 11, T423
тел: +7 (495) 621 13 42,
+ 7(495) 772 95 90 *27200; *27212.
e-mail: dhm-econ@hse.ru; shatskaya@hse.ru.
55 бюджетных мест
20 платных мест
110 бюджетных мест
40 государственных стипендий Правительства РФ для иностранцев
90 платных мест
5 платных мест для иностранцев
30 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
30 платных мест
3 платных места для иностранцев
35 бюджетных мест
15 государственных стипендий Правительства РФ для иностранцев
50 платных мест
3 платных места для иностранцев
20 платных мест
3 платных места для иностранцев
40 платных мест
3 платных места для иностранцев
50 платных мест
1 платное место для иностранцев
50 платных мест
3 платных места для иностранцев
20 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
2 платных места для иностранцев
20 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
1 платное место для иностранцев
40 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
10 платных мест
2 платных места для иностранцев
45 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
2 платных места для иностранцев
40 платных мест
2 платных места для иностранцев
65 бюджетных мест
20 государственных стипендий Правительства РФ для иностранцев
20 платных мест
1 платное место для иностранцев
60 платных мест
5 платных мест для иностранцев
Краткая аннотация доклада:
Simple game is a mathematical structure that reflects the distribution of power in a group of players and one of the most natural classes of games are weighted majority games. A simple game is roughly weighted if there exists a system of weights and a threshold such that all coalitions whose combined weight is above the threshold are winning and all coalitions whose combined weight is below the threshold are losing and a tie-breaking is needed to classify the coalitions whose combined weight is exactly the threshold. For example, Gabel'man's games that play a significant role in the theory are roughly weighted but not weighted.
Several necessary and sufficient conditions that guarantee weightedness are known. In this paper we give necessary and sufficient conditions for a simple game to have rough weights. We also define two functions that measure the deviation of a simple game with n players from a weighted majority game and roughly weighted majority game, respectively. We derive lower and upper bounds for these functions. We also investigate rough weightedness of simle games with a small number of players.
----------------------------------------------------------------------------------------------------------------------------------------------
Руководители семинара: д.т.н., проф. Алескеров Фуад Тагиевич, д.т.н., проф. Подиновский Владислав Владимирович.
Соруководитель семинара - д.т.н., проф. Миркин Борис Григорьевич.
----------------------------------------------------------------------------------------------------------------------------------------------