Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
109028, Москва, Покровский бульвар 11, T423
тел: +7 (495) 621 13 42,
+ 7(495) 772 95 90 *27200; *27212.
e-mail: dhm-econ@hse.ru; shatskaya@hse.ru.
55 бюджетных мест
20 платных мест
110 бюджетных мест
40 государственных стипендий Правительства РФ для иностранцев
90 платных мест
5 платных мест для иностранцев
30 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
30 платных мест
3 платных места для иностранцев
35 бюджетных мест
15 государственных стипендий Правительства РФ для иностранцев
50 платных мест
3 платных места для иностранцев
20 платных мест
3 платных места для иностранцев
40 платных мест
3 платных места для иностранцев
50 платных мест
1 платное место для иностранцев
50 платных мест
3 платных места для иностранцев
20 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
2 платных места для иностранцев
20 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
1 платное место для иностранцев
40 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
10 платных мест
2 платных места для иностранцев
45 бюджетных мест
10 государственных стипендий Правительства РФ для иностранцев
5 платных мест
2 платных места для иностранцев
40 платных мест
2 платных места для иностранцев
65 бюджетных мест
20 государственных стипендий Правительства РФ для иностранцев
20 платных мест
1 платное место для иностранцев
60 платных мест
5 платных мест для иностранцев
Abstract:
The paper develops a new approach to the theory of individual choice, based on the notion of similarity as developed by R.D.Luce, A.Tversky, A.Rubinstein and others. Our approach is descriptive: based on the extensive empirical and theoretical/philosophical evidence, we extend the notion of similarity to a family of binary relations which, under essentially the same assumptions as in Rubinstein (1988), serve as a basis to a topological space of perceptions of given incentives (exemplified as simple lotteries in individual choice tasks). Mental representations of different experimental tasks are then modeled as continuous maps relating different topological spaces, which provide natural explanation to several instances of context dependent choice, including preference reversals phenomenon and representation heuristic. We also obtain the conditions under which choice governed by the family of similarities can be represented by the canonical utility functions or choice procedures, and discuss testable implications of the theory.
-------------------------------------------------------------------------------------------------------------------------------------------------
Руководители семинара: д.т.н., проф. Алескеров Фуад Тагиевич, д.т.н., проф. Подиновский Владислав Владимирович.
Соруководитель семинара - д.т.н., проф. Миркин Борис Григорьевич.
-------------------------------------------------------------------------------------------------------------------------------------------------