Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Макроэкономика. Практикум странового анализа

Баженов Г. А., Беляков И. В., Бирюкова О. В. и др.

М.: НИЦ Инфра-М, 2025.

Статья
Физическая активность детей и их родителей: есть ли взаимосвязь?

Лопатина М. В., Хоркина Н. А., Кабисова А. В.

Электронный научный журнал "Социальные аспекты здоровья населения". 2025. Т. 71. № 1.

Глава в книге
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Контакты

109028, Москва
Покровский бульвар, 11 корп.S,
каб. S-527
тел: (495) 772-95-99 доб.27503, 27502, 28289

Руководство
Руководитель департамента Авдашева Светлана Борисовна
Менеджер Шевелев Максим Борисович

Тел.: (967) 170-0219

Social and Economic Networks: Models and Analysis

2020/2021
Учебный год
ENG
Обучение ведется на английском языке
3
Кредиты
Статус:
Курс по выбору
Когда читается:
2-й курс, 1 модуль

Course Syllabus

Abstract

The course shows how to model social and economic networks and their impact on human behavior. How do networks form, why do they exhibit certain patterns, and how does their structure impact diffusion, learning, and other behaviors? We will bring together models and techniques from economics, sociology, math, physics, statistics and computer science to answer these questions. The course begins with some empirical background on social and economic networks, and an overview of concepts used to describe and measure networks. Next, we will cover a set of models of how networks form, including random network models as well as strategic formation models, and some hybrids. We will then discuss a series of models of how networks impact behavior, including contagion, diffusion, learning, and peer influences. The course is taught on educational online platform “Coursera.org”, https://www.coursera.org/learn/social-economic-networks, Stanford University.
Learning Objectives

Learning Objectives

  • Learn how to model social and economic networks and their impact on human behavior.
  • How do networks form, why do they exhibit certain patterns, and how does their structure impact diffusion, learning, and other behaviors?
Expected Learning Outcomes

Expected Learning Outcomes

  • Know what meens Social Networks and their Impact, Definitions, Measures and Properties
Course Contents

Course Contents

  • Introduction, Empirical Background and Definitions
    Examples of Social Networks and their Impact, Definitions, Measures and Properties: Degrees, Diameters, Small Worlds, Weak and Strong Ties, Degree Distributions
  • Background, Definitions, and Measures Continued
    Homophily, Dynamics, Centrality Measures: Degree, Betweenness, Closeness, Eigenvector, and Katz-Bonacich. Erdos and Renyi Random Networks: Thresholds and Phase Transitions
  • Random Networks
    Poisson Random Networks, Exponential Random Graph Models, Growing Random Networks, Preferential Attachment and Power Laws, Hybrid models of Network Formation.
  • Strategic Network Formation
    Game Theoretic Modeling of Network Formation, The Connections Model, The Conflict between Incentives and Efficiency, Dynamics, Directed Networks, Hybrid Models of Choice and Chance.
  • Diffusion on Networks
    Empirical Background, The Bass Model, Random Network Models of Contagion, The SIS model, Fitting a Simulated Model to Data.
  • Learning on Networks
    Bayesian Learning on Networks, The DeGroot Model of Learning on a Network, Convergence of Beliefs, The Wisdom of Crowds, How Influence depends on Network Position..
  • Games on Networks
    Network Games, Peer Influences: Strategic Complements and Substitutes, the Relation between Network Structure and Behavior, A Linear Quadratic Game, Repeated Interactions and Network Structures.
Assessment Elements

Assessment Elements

  • non-blocking Online tests
  • non-blocking Final interview
    Finaloral interview is held on Zoom
  • non-blocking Online tests
  • non-blocking Final interview
    Finaloral interview is held on Zoom
Interim Assessment

Interim Assessment

  • Interim assessment (1 module)
    0.3 * Final interview + 0.7 * Online tests
Bibliography

Bibliography

Recommended Core Bibliography

  • Robins, G., Koskinen, J., & Lusher, D. (2012). Exponential Random Graph Models for Social Networks : Theory, Methods, and Applications. Cambridge: Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=498293
  • SULA, O., & ELENURM, T. (2018). Comparing Online Social Networks Ties as Tool for Entrepreneurial Learning Readiness in Small Economies. Informatica Economica, 22(3), 62–74. https://doi.org/10.12948/issn14531305/22.3.2018.06

Recommended Additional Bibliography

  • McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). BIRDS OF A FEATHER: Homophily in Social Networks. Annual Review of Sociology, 27, 415. https://doi.org/10.1146/annurev.soc.27.1.415
  • Nan Lin. (1999). Social Networks and Status Attainment. Annual Review of Sociology, 25, 467. https://doi.org/10.1146/annurev.soc.25.1.467