Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Макроэкономика. Практикум странового анализа

Баженов Г. А., Беляков И. В., Бирюкова О. В. и др.

М.: НИЦ Инфра-М, 2025.

Статья
Физическая активность детей и их родителей: есть ли взаимосвязь?

Лопатина М. В., Хоркина Н. А., Кабисова А. В.

Электронный научный журнал "Социальные аспекты здоровья населения". 2025. Т. 71. № 1.

Глава в книге
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Контакты

109028, Москва
Покровский бульвар, 11 корп.S,
каб. S-527
тел: (495) 772-95-99 доб.27503, 27502, 28289

Руководство
Руководитель департамента Авдашева Светлана Борисовна
Менеджер Шевелев Максим Борисович

Тел.: (967) 170-0219

Econometrics of Program Evaluation

2021/2022
Учебный год
ENG
Обучение ведется на английском языке
6
Кредиты
Статус:
Курс по выбору
Когда читается:
2-й курс, 1, 2 модуль

Преподаватель

Ящишенс Виталийс

Ящишенс Виталийс

Course Syllabus

Abstract

Today we witness the explosion in the availability of high quality data: increasingly governments (and firms) around the world open their datasets to the general audience. Simultaneously, we also see a huge demand both in policy and academic circles for people who are able to answer causal questions using these new datasets. This course provides a training in “classic” research designs and additionally teaches students how to implement these methods using a high level computing language.
Learning Objectives

Learning Objectives

  • The course consists of three parts: 1. “Classic” research designs; 2. R programming; 3. Reading group. The main goals of this course are:
  • providing students with necessary skills to understand identification and inference challenges of research designs;
  • getting programming skills on a high level computing language R;
  • teaching students to evaluate modern empirical literature.
Expected Learning Outcomes

Expected Learning Outcomes

  • 1. Understand assumptions behind “classic” research designs;
  • 2.Be able to use various research design to solve real world problems;
  • 3. Read and evaluate modern empirical literature;
  • 4. Ability to work with information: to find, evaluate and use information from various sources, necessary to solve scientific and professional problems;
  • 5. Ability to do research, including problem analysis, setting goals and objectives, identifying the object and subject of research, choosing the means and methods of research, assessing its quality;
  • 6. Ability to collect and analyse the data;
  • 7. Able to solve problems in professional sphere based on analysis and synthesis;
  • 8. Capability to work in a team.
Course Contents

Course Contents

  • 1. Introduction to Causal Inference in Economics.
  • 2.Introduction to R programming.
  • 3. Vectorized Computation and Data Aggregation in R.
  • 4. Selection on Observables Research Design.
  • 5. Difference in Differences Research Design.
  • 6. Instrumental Variables Research Design.
  • 7. Bootstrap.
  • 8. Regression Discontinuity Research Design.
  • 9. Reading Group.
Assessment Elements

Assessment Elements

  • non-blocking Presentation of the paper
  • non-blocking Empirical project
    Done in groups of two students.
  • non-blocking Problem set 1
    Done in groups of two students.
  • non-blocking Problem set 2
  • non-blocking Presentation of the paper
  • non-blocking Empirical project
    Done in groups of two students.
  • non-blocking Problem set 1
    Done in groups of two students.
  • non-blocking Problem set 2
Interim Assessment

Interim Assessment

  • 2021/2022 2nd module
    0.25 * Empirical project + 0.25 * Problem set 1 + 0.25 * Presentation of the paper + 0.25 * Problem set 2
Bibliography

Bibliography

Recommended Core Bibliography

  • Angrist, J. D. (DE-588)124748430, (DE-576)166629405. (2009). Mostly harmless econometrics : an empiricist’s companion / Joshua D. Angrist and Jörn-Steffen Pischke. Princeton, NJ [u.a.]: Princeton Univ. Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edswao&AN=edswao.286816679

Recommended Additional Bibliography

  • Computer age statistical inference : algorithms, evidence, and data science, Efron, B., 2017
  • Field experiments : design, analysis, and interpretation, Gerber, A. S., 2012
  • Gareth James, Daniela Witten, Trevor Hastie, Rob Tibshirani, & Maintainer Trevor Hastie. (2013). Type Package Title Data for An Introduction to Statistical Learning with Applications in R Version 1.0. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.28D80286
  • Hands-On programming with R, Grolemund, G., 2014
  • Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.cup.cbooks.9780521885881
  • Joshua D. Angrist, & Jörn-Steffen Pischke. (2014). Mastering ’Metrics: The Path from Cause to Effect. Princeton University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.pup.pbooks.10363
  • Lee, M. (2016). Matching, Regression Discontinuity, Difference in Differences, and Beyond. Oxford University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.oxp.obooks.9780190258740

Authors

  • JASCISENS VITALIJS -