Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

109028, Москва
Покровский бульвар, 11 корп.S,
каб. S-527
тел: (495) 772-95-99 доб.27503, 27502, 28289

Руководство
Руководитель департамента Авдашева Светлана Борисовна
Менеджер Шевелев Максим Борисович

Тел.: (967) 170-0219

Data Analysis in Python

2021/2022
Учебный год
ENG
Обучение ведется на английском языке
3
Кредиты
Статус:
Курс обязательный
Когда читается:
1-й курс, 1-3 модуль

Преподаватель

Course Syllabus

Abstract

This course will introduce fundamental programming concepts including data structures, networked application program interfaces, and databases, using the Python programming language. In this course, you will learn how to analyze data in Python using multi-dimensional arrays in numpy, manipulate DataFrames in pandas and so on. The course is completely based on the specialization courses https://www.coursera.org/specializations/python#about: 1. Programming for Everybody (Getting Started with Python) https://www.coursera.org/learn/python?specialization=python 2. Data structures in Python https://www.coursera.org/learn/python-data?specialization=python 3. Using Python to Access Web Data https://www.coursera.org/learn/python-network-data?specialization=python 4. Using Databases with Python https://www.coursera.org/learn/python-databases?specialization=python 5. Capstone: Retrieving, Processing, and Visualizing Data with Python https://www.coursera.org/learn/python-data-visualization?specialization=python
Learning Objectives

Learning Objectives

  • Learn how to get and analyze data using Python
  • This course will take you from the basics of Python to exploring many different types of data.
Expected Learning Outcomes

Expected Learning Outcomes

  • Accessing New Data Sources (Project)
  • Basic Structured Query Language
  • Building a Search Engine in Python
  • Data Models and Relational SQL
  • Databases and Visualization
  • Definition of Functions in Python
  • Exploring Data Sources (Project)
  • Files processing in Python
  • Installing and Using Python
  • JSON and the REST Architecture
  • Loops and Iteration in Python
  • Many-to-Many Relationships in SQL
  • Networks and Sockets in Python
  • Object Oriented Programming in Python
  • Programs that Surf the Web
  • Regular Expressions in Python
  • Spidering and Modeling Email Data
  • Strings processing in Python
  • The concept "Conditional Code"
  • The concept of "dictionary" in Python
  • The concept of "list" in Python
  • The concept of "tuple" in Python
  • Variables and Expressions
  • Visualizing Email Data in Python
  • Visualizing new Data Sources (Project)
  • Web Services and XML in Python
Course Contents

Course Contents

  • Programming for Everybody (Getting Started with Python)
  • Data structures in Python
  • Using Python to Access Web Data
  • Using Databases with Python
  • Retrieving, Processing, and Visualizing Data with Python
Assessment Elements

Assessment Elements

  • Partially blocks (final) grade/grade calculation The Final Exam
  • non-blocking Independent work
  • non-blocking Exploring Data Sources (Project)
    see https://www.coursera.org/learn/python-data-visualization?specialization=python
  • non-blocking Accessing New Data Sources (Project)
    see https://www.coursera.org/learn/python-data-visualization?specialization=python
  • non-blocking Visualizing new Data Sources (Project)
    see https://www.coursera.org/learn/python-data-visualization?specialization=python
Interim Assessment

Interim Assessment

  • 2021/2022 3rd module
    0.6 * Independent work + 0.4 * The Final Exam
Bibliography

Bibliography

Recommended Core Bibliography

  • Severance, C. (2016). Python for Everybody : Exploring Data Using Python 3. Place of publication not identified: Severance, Charles. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsotl&AN=edsotl.OTLid0000336

Recommended Additional Bibliography

  • Fabrizio Romano. (2018). Learn Python Programming : The No-nonsense, Beginner’s Guide to Programming, Data Science, and Web Development with Python 3.7, 2nd Edition: Vol. 2nd ed. Packt Publishing.

Authors

  • POLYAKOV KONSTANTIN LVOVICH