We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Quality and Limited Dependent Variables

2020/2021
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Type:
Elective course
When:
4 year, 1, 2 module

Instructors

Программа дисциплины

Аннотация

Целями освоения дисциплины являются овладение методами анализа микроэкономических данных, оценивания моделей с качественными и ограниченными значениями зависимой переменной, навыками работы со статистическими пакетами. Методы эконометрического анализа моделей с ограниченными значениями зависимой переменной, изучаемые в дисциплине, могут быть использованы в дальнейшем при подготовке выпускных квалификационных работ.
Цель освоения дисциплины

Цель освоения дисциплины

  • Научить слушателей грамотно выбирать, оценивать и интерпретировать эконометрические модели, применяемые для анализа микро-данных, то есть данных, поступающих из опросов домохозяйств, предприятий, индивидов и т.п.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умение оценивать и интерпретировать вероятностные модели бинарного выбора
  • Умение оценивать вероятностные модели по сгруппированным данным
  • Умение оценивать и интерпретировать системы бинарных уравнений с коррелированными ошибками
  • Умение выбирать и оценивать модели множественного выбора, наиболее адекватные имеющимся данным, и интерпретировать их результаты.
  • Умение грамотно выбирать и оценивать эконометрические модели по усечённым, цензурированным данным и данным, подверженным смещению отбора наблюдений
  • Умение применять современные непараметрические подходы к оцениванию моделей со смещением отбора.
  • Умение оценивать модели бинарного выбора и модели с ограниченными значениями зависимой переменной по панельным данным
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Модели бинарного выбора
    Линейная вероятностная модель. Probit и logit модели. Предельные эффекты. Тестирование общей линейной гипотезы. Прогнозирование. Ошибки спецификации.
  • Оценивание вероятностей по сгруппированным данным
    Группировка данных по значениям качественных объясняющих переменных. Использование взвешенного метода наименьших квадратов для оценивания вероятности при различных предположениях о распределении случайных ошибок.
  • Системы бинарных уравнений с коррелированными ошибками
    Внешне несвязанные и иерархические системы бинарных уравнений. Условия идентификации. Особенности оценивания и интерпретации результатов. Предельные эффекты совместных и условных вероятностей.
  • Модели бинарного выбора и модели с ограниченными значениями объясняемой переменной, оцениваемые по панельным данным
    Особенности оценивания и интерпретации probit и logit моделей бинарного выбора при наличии фиксированных и случайных индивидуальных эффектов. Оценивание моделей с усеченными данными по панельным данным. Подходы к оцениванию модели Хекмана по панельным данным.
  • Модели множественного выбора
    Порядковые (ordered) модели. Латентная переменная и ее интерпретация. Предельные эффекты. Проверка гипотезы о независимости границ латентной переменной от объясняющих переменных. Обобщенная порядковая модель. Модели последовательных значений. Множественная Logit-модель Мак Фаддена. Интерпретация с точки зрения полезности. Предположение и проверка гипотезы о независимости от посторонних альтернатив. Множественная probit модель.
  • Модели с ограниченными значениями зависимой переменной
    Усечённые и цензурированные выборки. Особенности функции правдоподобия. Truncated модели. Модель Тобина. Предельные эффекты и прогнозирование безусловного и условного математического ожидания зависимой переменной. Смещение отбора. Модель Хекмана. Предельные эффекты, прогнозирование и тестирование гипотез. Выбор между моделями Тобина, Хекмана и классической линейной регрессионной моделью. Модели с переключением.
  • Непараметрический подход к оцениванию моделей со смещением отбора
    Критика параметрического подхода Хекмана. Двух и трёх шаговые процедуры оценивания модели Хекмана с корректировкой смещения отбора как неизвестной функции от объясняющих переменных. Методы Галланта и Нички, Ньюи и Велла, Робинсона.
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание №1
    Если домашнее задание сдаётся позже обозначенного срока, начисляются штрафные баллы: -3 за каждую неделю после дедлайна.
  • неблокирующий Домашнее задание №2
    См. комментарии к ДЗ№1
  • неблокирующий Экзамен
    Экзамен проводится в дистанционном формате
Промежуточная аттестация

Промежуточная аттестация

  • Промежуточная аттестация (2 модуль)
    0.4 * Домашнее задание №1 + 0.4 * Домашнее задание №2 + 0.2 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Bruce E. Hansen, Donald W. K. Andrews, A. Ronald, Gallant Douglas, W. Nychka, & James G. Mackinnon. (n.d.). Semi-Nonparametric Maximum Likelihood Estimation. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.7BD2F74E
  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics : Methods and Applications. New York, NY: Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=138992
  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics. Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.cup.cbooks.9780521848053
  • Das, M., Newey, W. K., & Vella, F. (2003). Nonparametric Estimation of Sample Selection Models. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.D0561FB4
  • Robinson, P. M. (1988). Root- N-Consistent Semiparametric Regression. Econometrica, (4), 931. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.a.ecm.emetrp.v56y1988i4p931.54
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2004
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2005
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2007

Рекомендуемая дополнительная литература

  • A. Colin Cameron, & Pravin K. Trivedi. (2010). Microeconometrics Using Stata, Revised Edition. StataCorp LP. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.tsj.spbook.musr