We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Fuzzy Stochastic Analysis

2021/2022
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Type:
Elective course
When:
3 year, 4 module

Instructor

Shvedov, Alexey S.

Shvedov, Alexey S.

Программа дисциплины

Аннотация

Настоящая программа учебной дисциплины «Нечетко-вероятностный анализ данных» для студентов по направлению 38.03.05 «Бизнес-информатика» подготовки бакалавра устанавливает минимальные требования к знаниям и умениям студента и определяет содержание и виды учебных занятий и отчетности. Нечеткое моделирование (fuzzy modeling) стало важной частью прикладных исследований во многих областях, в том числе, в финансах и в экономике. Практическое значение этого подхода неуклонно увеличивается. В мире существует несколько журналов по нечеткой математике и ее применениям, выпущено значительное количество книг. Специалисты, владеющие этим математическим аппаратом, становятся высоко востребованными. Развитие многих широко применяемых моделей пошло именно по пути включения нечеткости. Практическое значение вероятностного моделирования (probabilistic modeling) остается бóльшим, однако дистанция сокращается. Идея вероятностного моделирования состоит в том, что неизвестные величины могут принимать различные значения, и каждому значению или группе значений приписывается некоторая вероятность. Идея нечеткого моделирования заключается в том, что сами значения могут быть расплывчатыми, нечеткими, и допускаются различные формы этой расплывчатости. Вероятностное и нечеткое моделирование на сегодняшний день являются основными подходами к передаче неопределенности в математических моделях, используемых при решении прикладных задач. Наиболее интересные и важные из этих моделей – это те, в которых комбинируются методы нечеткой математики и методы теории вероятностей, такие модели называются нечетко-вероятностными. Если вероятностный анализ используется в различных прикладных исследованиях уже в течение веков, то нечеткая математика возникла только в 60-е годы XX века. Нечетко-вероятностное моделирование развивается, начиная с 70-х годов прошлого века. Здесь получено много важных результатов. Основное внимание в курсе уделяется анализу данных. Однако затрагиваются и те области, для которых анализ данных осуществляется: прогнозирование, управление, оптимизация. При создании курса использовано значительное число современных журнальных публикаций.
Цель освоения дисциплины

Цель освоения дисциплины

  • Приобретение студентами базовых знаний по нечеткой математике и нечетко-вероятностному анализу и по их применению к анализу данных
  • Формирование навыков работы с соответствующими абстрактными понятиями, в том числе, и с применением к конкретным прикладным задачам, формирование умения решать задачи
Планируемые результаты обучения

Планируемые результаты обучения

  • знает основные определения и результаты, относящиеся к нечетким множествам типа 2 и к нечетким системам типа 2, понимает пути практического применения, умеет решать задачи
  • знает основные определения и результаты, относящиеся к нечетким системам, понимает пути практического применения, умеет решать задачи
  • знает основные определения и результаты, относящиеся к нечеткому математическому программированию и к нечетким играм, понимает пути практического применения, умеет решать задачи
  • знает, как обобщаются некоторые результаты математической статистики при анализе нечетких данных
  • знает, как обобщаются некоторые результаты теории вероятностей при замене точных значений на расплывчатые
  • знает, как обобщаются некоторые результаты эконометрики при работе с нечеткими данными
  • знаком с основными понятиями теории нечетких множеств, знает примеры применения, умеет решать задачи
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Нечеткие множества, операции над ними. Нечеткие отношения
  • Нечетко-случайные величины, моменты и распределения нечетко-случайных величин
  • Теория статистического вывода при анализе нечетких данных
  • Нечетко-случайные регрессия и анализ временных рядов
  • Нечеткое математическое программирование и нечеткие игры. Игры с неполной информацией
  • Нечеткие системы управления. Устойчивость нечетких систем
  • Нечеткие множества типа 2, нечеткие отношения типа 2, нечеткие системы типа 2
Элементы контроля

Элементы контроля

  • неблокирующий контрольная работа
    Будет указана папка в MS Teams, где каждый студент сможет получить свое задание, а также электронный адрес, по которому он сможет послать свою работу.
  • неблокирующий домашнее задание
    Состоит из двух или трех частей, каждая часть оценивается отдельно.
  • неблокирующий экзамен
    Будет указана папка в MS Teams, где каждый студент сможет получить свое задание, а также электронный адрес, по которому он сможет послать свою работу.
  • неблокирующий самостоятельная работа
    Не используется при расчете окончательной оценки.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 4 модуль
    0.25 * домашнее задание + 0.25 * контрольная работа + 0.5 * экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Bector, C. R., & Chandra, S. (2005). Fuzzy Mathematical Programming and Fuzzy Matrix Games. Berlin: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=161428
  • Lilly, J. H. (2010). Fuzzy Control and Identification. Hoboken, N.J.: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=345829
  • Вельдяксов, В., & Шведов, А. (2014). О Методе Наименьших Квадратов При Регрессии С Нечеткими Данными. Экономический Журнал Высшей Школы Экономики, (2). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsclk&AN=edsclk.15693633
  • Вельдяксов, В., & Шведов, А. (2014). Проверка Гипотез При Регрессии С Нечеткими Данными. Экономический Журнал Высшей Школы Экономики, (3). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsclk&AN=edsclk.15693639
  • Методы оптимальных решений. Т.2: Многокритериальность. Динамика. Неопределенность, , 2010

Рекомендуемая дополнительная литература

  • Dash, M. K., & Kumar, A. (2016). Fuzzy Optimization and Multi-Criteria Decision Making in Digital Marketing. Hershey, PA: Business Science Reference. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1087743
  • Fang, Y., Lai, K. K., & Wang, S. (2008). Fuzzy Portfolio Optimization : Theory and Methods. Berlin: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=245311
  • Jantzen, J. (2013). Foundations of Fuzzy Control : A Practical Approach. Chichester, West Sussex, United Kingdom: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=606083
  • Nguyen, H. T. (2015). Statistics of Fuzzy Data: A Research Direction for Applied Statistics. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.154F4535
  • Nur Fazliana Rahim, Mahmod Othman, Rajalingam Sokkalingam, & Evizal Abdul Kadir. (2019). Type 2 Fuzzy Inference-Based Time Series Model. Symmetry, (11), 1340. https://doi.org/10.3390/sym11111340
  • Viertl, R. (2007). Fuzzy Data and Statistical Modeling. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.E4DD52AD
  • Viertl, R. (2010). Statistical Methods for Fuzzy Data. Chichester, West Sussex: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=354087

Авторы

  • Шведов Алексей Сергеевич