We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Article
The Impact of Carbon Tax and Research Subsidies on Economic Growth in Japan

Besstremyannaya G., Dasher R., Golovan S.

HSE Economic Journal. 2025. Vol. 29. No. 1. P. 72-102.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Econometrics

2024/2025
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Type:
Compulsory course
When:
3 year, 1-3 module

Instructors

Программа дисциплины

Аннотация

Анализ данных на различных уровнях их формирования от макроэкономики до экономики фирмы и семейного хозяйства, с целью обнаружения скрытых закономерностей и связей, является одной из важнейших детерминант успешного развития современной отечественной и мировой экономики. В настоящее время и в обозримой перспективе инструментарий исследователя в этой области активно обогащается и будет обогащаться методами искусственного интеллекта, которые позволяют переложить решение части творческих задач на интеллектуальные системы. Освоение этих возможностей следует начинать на начальной стадии развития необходимых навыков у студентов. Целью дисциплины «Эконометрика» является — дать студентам научное представление о методах и моделях современной эконометрики, в частности, основанных на использовании искусственного интеллекта, которые позволяют получать количественные оценки различных закономерностей в экономике, а также прогнозировать социально-экономические процессы. Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям студента и определяет содержание и виды учебных занятий и отчетности. Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов направления 38.03.01 "Экономика" подготовки бакалавра, изучающих дисциплину «Эконометрика».
Цель освоения дисциплины

Цель освоения дисциплины

  •  Формирование у студентов навыков самостоятельной реализации элементарных проектов, связанных с управлением данными— организацией сбора и хранения данных, выбором данных по определенным критериям, содержащим несколько условий, модификацией данных, обменом данными между различными приложениями, интеграцией данных, полученных из различных источников.
  •  Формирование у студентов навыков самостоятельной реализации элементарных проектов, связанных с современным анализом данных основанном на машинном/статистическом обучении с целью описания статистических взаимосвязей между различными показателями для организации планирования, управления и прогнозирования.
  •  Ознакомление студентов с примерами использования методов искусственного интеллекта в анализе экономических данных, в частности в исследовании рынков и интеллектуальном анализе полученных данных.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умеет содержательно интерпретировать параметры моделей с панельными данными.
  • Умеет анализировать качество данных, умеет обнаруживать статистические свойства данных.
  • Знает методы обнаружения «единичных корней».
  • Знает определение модели ARMA.
  • Знает определение стационарности в широком смысле.
  • Умеет определять наличие/отсутствие стационарности.
  • Умеет построить модель ARMA.
  • Умеет приводить ряд к стационарному виду.
  • Умеет проверять гипотезы из прикладной области с помощью построенной МЛР на основе проверки статистических гипотез.
  • Умеет выбирать релеватную спецификацию модели для анализа панельных данных, корректно интерпретирует результаты оценивания модели с фиксированными эффектами и модели со случайными эффектами
  • Записывает уравнение регрессии, учитывающее панельный характер данных.
  • Умеет оценивать параметры моделей с панельными данными
  • Знать основные принципы регрессионного анализа панельных данных и уметь с ними работать
  • Умеет строить модель долговременного и гармонического тренда временного ряда
  • Знать основные задачи, решаемые с использованием статистического обучения.
  • Знать основные проблемы, возникающие при использовании статистического обучения.
  • Уметь выполнить иерархическую кластеризацию данных и интерпретировать полученные результаты
  • Уметь выполнить кластеризацию к-средних с выбором оптимального числа кластеров. Уметь интерпретировать полученные результаты.
  • Уметь выбрать количество и построить главные компоненты для заданного набора данных.
  • Уметь дать интерпретацию главным компонентам.
  • Знать понятия "выброс для линейной регрессии", "точка разбалансировки".
  • Уметь диагностировать точки разбалансировки и выбросы для линейной регрессии.
  • Уметь специфицировать и оценить модель логистической регрессии.
  • Уметь оценить качество модели логистической регрессии
  • Уметь построить регрессионное дерево
  • Уметь построить дерево классификации
Содержание учебной дисциплины

Содержание учебной дисциплины

  • МИРЭК_1. Предварительный анализ данных
  • ISL_2. Определение и задачи статистического обучения
  • ISL_7. Обучение без учителя. Классификация
  • МИРЭК_1-3 Обучение без учителя. Снижение размерности
  • МИРЭК_1-4. Обучение без учителя. Обнаружение аномалий.
  • ISL_4. Задача восстановления регрессии
  • ISL_6. Обучение с учителем. Методы классификации. Модели конечного выбора.
  • МИРЭК_1-7. Обучение с учителем. Классификация. Линейный дискриминантный анализ.
  • ISL_5. Обучение с учителем. Деревья принятия решений.
  • МИРЭК_1-9. Модели панельных данных
  • МИРЭК_1-10. Моделирование сезонных и не сезоных явлений.
  • МИРЭК_1-11. Определение и классификация временных рядов.
  • МИРЭК_1-12. Модели нестационарных процессов.
Элементы контроля

Элементы контроля

  • неблокирующий Работа на семинарах - 1
    Решение задач на семинарах.
  • неблокирующий Экзамен - 1
  • неблокирующий Работа на семинарах - 3
    Решение задач на семинарах
  • неблокирующий Экзамен - 2
  • неблокирующий Вопрос на лекции - 1
    Тест в конце каждой лекции по материалу текущей и предыдущей лекций.
  • неблокирующий Вопрос на лекции - 2
    Тест в конце каждой лекции по материалу текущей и предыдущей лекций.
  • неблокирующий Вопрос на лекции - 3
    Тест в конце каждой лекции по материалу текущей и предыдущей лекций.
  • неблокирующий Работа на семинарах - 2
    Решение задач на семинарах
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    0.3 * Вопрос на лекции - 1 + 0.3 * Работа на семинарах - 1 + 0.4 * Экзамен - 1
  • 2024/2025 3rd module
    0.1 * Вопрос на лекции - 2 + 0.1 * Вопрос на лекции - 3 + 0.3 * Работа на семинарах - 2 + 0.3 * Работа на семинарах - 3 + 0.2 * Экзамен - 2
Список литературы

Список литературы

Рекомендуемая основная литература

  • The elements of statistical learning : data mining, inference, and prediction, Hastie, T., 2017
  • Анализ временных рядов и прогнозирование : учебник для вузов, Афанасьев, В. Н., 2010
  • Введение в эконометрический анализ панельных данных : учеб. пособие, Ратникова, Т. А., 2010
  • Эконометрика : учеб. пособие для вузов, Айвазян, С. А., 2010
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2001
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2021

Рекомендуемая дополнительная литература

  • Clustering for data mining : a data recovery approach, Mirkin, B., 2005
  • Contrast data mining : concepts, algorithms, and applications, , 2013
  • Data mining : practical machine learning tools and techniques, Witten, I. H., 2011
  • Анализ временных рядов. Прогноз и управление. Вып.1: ., Бокс, Дж., 1974
  • Анализ временных рядов. Прогноз и управление. Вып.2: ., Бокс, Дж., 1974
  • Анализ панельных данных и данных о длительности состояний : учеб. пособие, Ратникова, Т. А., 2014
  • Технологии анализа данных: Data Mining, Visual Mining, Text Mining, OLAP : учеб. пособие, Барсегян, А. А., 2008
  • Эконометрика - 2: продвинутый курс с приложениями в финансах : учебник, Айвазян, С. А., 2015
  • Эконометрика : учебник и практикум для прикладного бакалавриата, Демидова, О. А., 2017
  • Эконометрика для начинающих : дополнительные главы, Носко, В. П., 2005
  • Эконометрика для начинающих : Осн. понятия, элементарные методы, граница применимости, интерпретация результатов, Носко, В. П., 2000
  • Эконометрика. Кн. 1: Ч. 1: Основные понятия, элементарные методы; Ч.2 : Регрессионный анализ временных рядов, Носко, В. П., 2011
  • Эконометрика. Кн. 2: Ч. 3: Системы одновременных уравнений, панельные данные, модели с дискретными и ограниченными объ..., Носко, В. П., 2011

Авторы

  • Поляков Константин Львович
  • Кузнецова Елена Викторовна