We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Article
The Impact of Carbon Tax and Research Subsidies on Economic Growth in Japan

Besstremyannaya G., Dasher R., Golovan S.

HSE Economic Journal. 2025. Vol. 29. No. 1. P. 72-102.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Machine Learning in Economics

2024/2025
Academic Year
RUS
Instruction in Russian
3
ECTS credits
Type:
Compulsory course
When:
3 year, 4 module

Instructors

Программа дисциплины

Аннотация

Курс посвящен использованию методов машинного обучения для прогнозирования экономических показателей и оценивания эффектов воздействия в экономических исследованиях. Эти навыки позволят слушателям курса решать широкий класс задач, таких как построение скоринговых моделей и прогнозирование поведения клиентов, а также оценивание эффективности государственных программ и решений в бизнесе.
Цель освоения дисциплины

Цель освоения дисциплины

  • Научиться прогнозировать экономические показатели и оценивать эффекты воздействия с помощью методов машинного обучения.
Планируемые результаты обучения

Планируемые результаты обучения

  • Обучающийся может назвать сильные и слабые стороны изученных методов классификации: байесовский классификатор, наивный байесовский классификатор, байесовские сети, метод ближайших соседей, решающие деревья, логистическая регрессия, метод опорных векторов.
  • Обучающийся может привести гипотетические примеры использования методов классификации в прикладных и теоретических экономических исследованиях.
  • Обучающийся может привести гипотетические примеры использования методов регрессионного анализа в прикладных и теоретических экономических исследованиях.
  • Обучающийся может назвать сильные и слабые стороны изученных методов регрессионного анализа: регрессионные деревья, линейная регрессия.
  • Обучающийся может объяснить, как используется регуляризация, как она влияет на смещение и дисперсию оценок, а также как подобрать оптимальный штраф.
  • Обучающийся может записать и проинтерпретировать формулы среднего эффекта воздействия, условного среднего эффекта воздействия и локального среднего эффекта воздействия, а также объяснить различия между ними.
  • Обучающийся может назвать предпосылки, а также сильные и слабые стороны методов машинного обучения, а также подходов, образованных по результатам синтеза методов машинного обучения и эконометрчиеских методов, используемых для оценивания различных видов эффектов воздействия, изучаемых в курсе.
  • Обучающийся может объяснить проблему сравнения точности оценок условных средних эффектов воздействия, полученных различными методами.
  • Обучающийся может мотивировать применение изученных методов оценивания эффектов воздействия для решения определенных экономических задач.
  • Обучающийся может объяснить алгоритм, а также сильные и слабые стороны бэггинга, в частности, как он сказывается на дисперсии и смещении оценок.
  • Обучающийся может объяснить алгоритм, а также сильные и слабые стороны градиентного бустинга. Кроме того, обучающийся может объяснить связь градиентного бустинга с градиентным спуском и способы предотвращения переобучения при использовании данного метода.
  • Обучающийся может объяснить алгоритм случайного леса, а также сильные и слабые стороны данного подхода и его связь с бэггингом.
  • Обучающийся может сформулировать различия между локальной и глобальной оптимизацией.
  • Обучающийся может объяснить алгоритм градиентного спуска и генетический алгоритм, а также сформулировать основные различия между ними.
  • Обучающийся может перечислить и объяснить на примере виды ошибок прогнозов.
  • Обучающийся может описать сильные и слабые стороны различных способов измерения точности прогнозов.
  • Обучающийся может объяснить мотивацию разделения выборки на тестовую и обучающую.
  • Обучающийся может описать алгоритм кросс-валидации, а также объяснить необходимость его применения.
  • Обучающийся может сформулировать проблему переобучения и привести гипотетических пример, в котором она возникает, а также описать способы борьбы с переобучением.
  • Обучающийся может построить матрицу путаницы и проинтерпретировать ее.
  • Обучающийся может сформулировать определение функции потерь и привести несколько примеров, а также объяснить какими соображениями следует руководствоваться при выборе конкретной функции потерь.
  • Обучающийся может объяснить структуру нейронной сети, посчитать значение функции потерь при фиксированных параметрах нейронной сети, а также описать алгоритм обучения нейронной сети.
  • Обучающийся может объяснить, что такое функция активации и привести пример такой функции.
  • Обучающийся может объяснить алгоритм расчета градиента функции потерь по параметрам нейронной сети с помощью алгоритма обратного распространения ошибки.
  • Обучающийся может объяснить необходимость регуляризации параметров нейронной сети, а также описать используемый для этого метод исключения.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Методы регрессионного анализа в машинном обучении
  • Методы классификации в машинном обучении
  • Машинное обучение в эконометрике
  • Ансамбли в машинном обучении
  • Численная оптимизация
  • Качество прогнозов и выбор модели
  • Глубинное обучение
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание 1
  • неблокирующий Домашнее задание 2
    Домашнее задание, которое можно выполнять в группах до 3 человек. Сдается либо в форме текста, либо в форме видео. В обоих случаях необходимо приложить удобным образом оформленный код, позволяющий воспроизвести все результаты. Также, студенты могут получать индивидуальные дополнительные баллы за домашнее задание в зависимости от активности на занятиях и участия в дополнительных мероприятиях по курсу, таких как, например, соревнования по прогнозированию.
  • неблокирующий Экзамен
    Экзамен проходит в письменной форме. Однако, при наличии уважительной причины возможна досрочная сдача экзамена в устной форме.
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    0.01 * Домашнее задание 1 + 0.29 * Домашнее задание 2 + 0.7 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Machine learning : a probabilistic perspective, Murphy, K. P., 2012

Рекомендуемая дополнительная литература

  • Pattern recognition and machine learning, Bishop, C. M., 2006

Авторы

  • Потанин Богдан Станиславович
  • Погорелова Полина Вячеславовна
  • Долгих София Игоревна