We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Article
The Impact of Carbon Tax and Research Subsidies on Economic Growth in Japan

Besstremyannaya G., Dasher R., Golovan S.

HSE Economic Journal. 2025. Vol. 29. No. 1. P. 72-102.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Econometrics (Advanced Level I)

2024/2025
Academic Year
ENG
Instruction in English
6
ECTS credits
Type:
Elective course
When:
1 year, 1, 2 module

Instructors

Course Syllabus

Abstract

The course “Advanced Econometrics ” focuses on the estimation, inference and identification of regression models. Particular attention is paid to the econometric theory, to the application of econometrics to real-world problems, and to the interpretation of the estimation results. The course includes linear regressions, Gauss-Markov theorem, generalised least squares estimation, endogeneity, instrumental variables, maximum likelihood estimation, and a panel data introduction. The course will include the use of STATA and MS Excel. Use of R and other statistical analysis software is optional
Learning Objectives

Learning Objectives

  • The course aims to provide students with: • knowledge on the fundamentals of econometrics and its application • knowledge and proficiency on the use of statistical package STATA for econometric analysis • practice in conducting data analysis and application of econometric tools in research and analytics
Expected Learning Outcomes

Expected Learning Outcomes

  • Students will gain knowledge on the fundamentals of econometrics and its application
  • Students will gain knowledge and proficiency on the use of statistical package STATA for econometric analysis
  • Practice in conducting data analysis and application of econometric tools in research and analytics
Course Contents

Course Contents

  • Introduction
  • Matrix algebra
  • Theory of probabilities and statistics. Estimation and inference.
  • The linear regression model. Least squares. Goodness-of-fit and analysis of variance.
  • The Gauss-Markov theorem. Linear hypothesis testing.
  • Interpreting and comparing regression models. Functional form and structural change. Multicollinearity. Nonlinear models
  • Heteroskedasticity. Generalized least squares.
  • Autocorrelation. Testing for first order autocorrelation.
  • Endogeneity, instrumental variables and GMM
  • Panel data models. Introduction
  • Maximum likelihood estimation and specification tests.
Assessment Elements

Assessment Elements

  • non-blocking Домашнее задание
    The first homework (HW1, Module 1): the course participants propose a hypothesis and collect their own cross-sectional data for a regression model that is going to be analysed further in Module 2. • The second homework (HW2, Module 2) is based on data collected in Module 1 (and approved by a tutor!). It imposes empirical justification of the stated hypotheses on the base of the material of the topics 4-9. Students are expected to use statistical software STATA or another for data analysis.
  • non-blocking Тест
    An intermediate test (IT, Module 1) includes tests and problems on the topics 4-6.
  • non-blocking Домашнее задание
    The first homework (HW1, Module 1): the course participants propose a hypothesis and collect their own cross-sectional data for a regression model that is going to be analysed further in Module 2. • The second homework (HW2, Module 2) is based on data collected in Module 1 (and approved by a tutor!). It imposes empirical justification of the stated hypotheses on the base of the material of the topics 4-9. Students are expected to use statistical software STATA or another for data analysis.
  • non-blocking Тест
    Exam (E) includes tests and problems on the topics of the course
Interim Assessment

Interim Assessment

  • 2024/2025 2nd module
    0.1 * Домашнее задание + 0.2 * Домашнее задание + 0.3 * Тест + 0.4 * Тест
Bibliography

Bibliography

Recommended Core Bibliography

  • A guide to modern econometrics, Verbeek, M., 2012

Recommended Additional Bibliography

  • Econometric analysis of panel data, Baltagi, B. H., 2005
  • Econometric analysis, Greene, W. H., 2012

Authors

  • Шевелев Максим Борисович
  • KOTYRLO ELENA STANISLAVOVNA