We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Article
The Impact of Carbon Tax and Research Subsidies on Economic Growth in Japan

Besstremyannaya G., Dasher R., Golovan S.

HSE Economic Journal. 2025. Vol. 29. No. 1. P. 72-102.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Econometrics (Advanced Level)

2021/2022
Academic Year
RUS
Instruction in Russian
5
ECTS credits
Type:
Compulsory course
When:
1 year, 3, 4 module

Instructors

Программа дисциплины

Аннотация

Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям студента и определяет содержание и виды учебных занятий и отчетности. Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов, обучающихся по магистерской программе “Стохастическое моделирование в экономике и финансах”.
Цель освоения дисциплины

Цель освоения дисциплины

  • Целью данного курса является не только обучение студентов новым навыкам в работе с эконометрическим аппаратом и их применение к изучению текущих экономических реалий, но также изучение и обзор эконометрических методов, составляющих основу эконометрики как дисциплины. Программа курса включает в себя вывод базовых свойств основных эконометрических методов оценивания, исключая наиболее сложные аналитические доказательства. Изучение данных методов позволяет понять суть подходов, принятых в эконометрике. В курсе рассматриваются предположения, в соответствии с которыми возможно применение того или иного подхода. Кроме того, в ходе изучения курса студенты получают навыки, необходимые для прочтения и понимания эконометрических публикаций продвинутого уровня.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знать о влиянии включения/исключения наблюдений и объясняющих переменных на свойства МНК-оценок параметров регрессии., а также о последствиях неправильной спецификации модели регрессии. Уметь производить анализ остатков модели регрессии (тесты на нормальность, автокорреляцию и гетероскедастичность остатков).
  • Знать определения различных типов сходимости. Уметь применять метод инструментальных переменных для получения оценок коэффициентов моделей регрессии со стохастическими параметрами.
  • Знать основные понятия регрессивного анализа. Уметь применять метод моментов и метод наименьших квадратов для оценки коэффициентов модели регрессии. Знать свойства и геометрическую интерпретацию МНК-оценок коэффициентов регрессии. Знать критерии качества подгонки регрессионной модели к данным, а также их свойства.
  • Знать теорему Гаусса-Маркова. Уметь строить линейные модели с линейными ограничениями на параметры. Уметь применять метод множителей Лагранжа для получения УМНК-оценок.
  • Ознакомиться с одной из представленных на выбор тем по эконометрике с целью расширения кругозора в области эконометрического моделирования.
  • Уметь использовать фиктивные переменные для построения моделей регрессии для разнородных данных. Уметь применять тест Чоу и дамми-переменные для выявления структурных сдвигов.
  • Уметь применять метод максимального правдоподобия для получения оценок коэффициентов регрессии. Знать свойства ММП-оценок и их взаимосвязь с МНК-оценками. Уметь применять ассимптотические тесты в ММП (LR-тест, тест Вальда, LM-тест).
  • Уметь применять профессиональные знания и умения на практике.
  • Уметь строить модели с дискретной зависимой переменной (модели бинарного и множественного выбора, модели с урезанными и центрированными данными, Пуассоновская регрессия), а также знать как интерпретируются их коэффициенты.
  • Уметь строить модели с фиксированным и случайным эффектом для панельных данных. Знать тест Хаусмана и тесты на наличие случайного/детерминированного индивидуального эффекта.
  • Уметь строить нелинейные модели регрессии, а также оценивать их коэффициенты с помощью нелинейного МНК (НМНК) и ММП.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Тема 1. Понятие регрессии. Геометрическая интерпретация в линейной регрессии.
  • Тема 2. Понятие классической линейной регрессии (CLR). МНК в предположении о нормальности
  • Тема 3. Случайные регрессоры. Состоятельность оценок.
  • Тема 4. Разнородность наблюдаемых объектов. Гетероскедастичность. Автокорреляция остатков.
  • Тема 5. Диагностика в линейной модели. Ошибки спецификации в линейной регрессии. Критерии выбора модели.
  • Тема 6. Оценки метода максимального правдоподобия (ML) и квазимаксимального правдоподобия (QML).
  • Тема 7. Нелинейные модели регрессии.
  • Тема 8. Понятие о моделях с дискретной зависимой переменной.
  • Тема 9. Понятие о моделях с панельными данными.
  • Тема 10. Другие вопросы эконометрики.
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа №1
  • блокирующий Контрольная работа №2
    Время выполнения - 2.5 часа. Проводится без прокторинга. Студентам будут разосланы задачи, они через указанное время должны загрузить pdf-файл с решениями.
  • неблокирующий Домашние задания и самостоятельные работы
    Домашние задания являются еженедельными и принимаются только в бумажном виде (сканы) и в указанные сроки. В течение всего курса предусмотрены две самостоятельные работы.
  • неблокирующий Проект (самостоятельное прикладное эконометрическое исследование)
    «Проект» принимается только в бумажном виде(сканы) и только в указанные сроки.
  • неблокирующий Контрольная работа №1
  • блокирующий Контрольная работа №2
    Время выполнения - 2.5 часа. Проводится без прокторинга. Студентам будут разосланы задачи, они через указанное время должны загрузить pdf-файл с решениями.
  • неблокирующий Домашние задания и самостоятельные работы
    Домашние задания являются еженедельными и принимаются только в бумажном виде (сканы) и в указанные сроки. В течение всего курса предусмотрены две самостоятельные работы.
  • неблокирующий Проект (самостоятельное прикладное эконометрическое исследование)
    «Проект» принимается только в бумажном виде(сканы) и только в указанные сроки.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 4 модуль
    0.1 * Контрольная работа №1 + 0.6 * Контрольная работа №2 + 0.1 * Домашние задания и самостоятельные работы + 0.2 * Проект (самостоятельное прикладное эконометрическое исследование)
Список литературы

Список литературы

Рекомендуемая основная литература

  • A guide to modern econometrics, Verbeek, M., 2008
  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics : Methods and Applications. New York, NY: Cambridge University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=138992
  • Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. Cambridge, Mass: MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=78079
  • Сборник задач к начальному курсу эконометрики : учеб. пособие для вузов, Катышев, П. К., 2007
  • Эконометрика. Начальный курс : учебник для вузов, Магнус, Я. Р., 2007

Рекомендуемая дополнительная литература

  • Econometric theory and methods, Davidson, R., 2004

Авторы

  • Погорелова Полина Вячеславовна
  • Пересецкий Анатолий Абрамович