We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev
Book
Academic Star Wars: Excellence Initiatives in Global Perspective
In press

Yudkevich Maria, Altbach P. G., Salmi J.

Cambridge: MIT Press, 2023.

Article
The Impact of Carbon Tax and Research Subsidies on Economic Growth in Japan

Besstremyannaya G., Dasher R., Golovan S.

HSE Economic Journal. 2025. Vol. 29. No. 1. P. 72-102.

Book chapter
Science or industry: Improving the quality of the Russian higher education system

Panova A., Slepyh V.

In bk.: Vocation, Technology & Education. Vol. 1. Iss. 4. Shenzhen Polytechnic University, 2024.

Working paper
Living Standards in the USSR during the Interwar Period

Voskoboynikov I.

Economics/EC. WP BRP. Высшая школа экономики, 2023. No. 264.

Contacts

109028, Moscow
Pokrovsky blvd. 11,
Room S-527
Phone: (495) 772-95-99 ext.27502, 27503, 27498

Administration
Department Head Svetlana B. Avdasheva
Deputy Department Head Liudmila S. Zasimova
Manager Maxim Shevelev

Time Series Analysis

2024/2025
Academic Year
RUS
Instruction in Russian
6
ECTS credits
Type:
Compulsory course
When:
1 year, 3, 4 module

Instructor

Программа дисциплины

Аннотация

Настоящая программа учебной дисциплины устанавливает минимальные требования к знаниям и умениям студента, и определяет содержание и виды учебных занятий и отчетности. Программа предназначена для преподавателей, ведущих данную дисциплину, учебных ассистентов и студентов, обучающихся по магистерской программе "Прикладная экономика". Программа разработана в соответствии с: • Образовательным стандартом федерального государственного автономного образовательного учреждения высшего профессионального образования «Национальный исследовательский университет “Высшая школа экономики”» для направления 38.04.01 Экономика подготовки магистра; • Рабочим учебным планом университета по направлению 38.04.01 Экономика» подготовки магистра утвержденным в 2019 г. Курс "Анализ временных рядов" является курсом по выбору и рассчитан, в первую очередь, на студентов 1-го курса магистерской программы «Прикладная экономика», а также студентов иных магистерских программ. Материал курса предназначен для использования в курсах, связанных с количественным анализом динамики реальных экономических явлений, таких как, например, макроэкономика, прикладная макроэкономика, теория финансов и других. Он может быть использован в спецкурсах по теории случайных процессов, математическим моделям в экономике, оптимальному управлению, статистическому прогнозированию, применению методов теории вероятностей в финансовой математике, принятию решений в условиях неопределенности. Требования к студентам: курс "Анализ временных рядов" рассчитан на студентов, прослушавших курс математического анализа (включающий дифференциальное и интегральное исчисление), курс разностных уравнений, а также курсы линейной алгебры, методов оптимальных решений, экономической статистики, теории вероятностей и математической статистики, эконометрики.
Цель освоения дисциплины

Цель освоения дисциплины

  • В результате освоения дисциплины студент: 1. Способен оценивать и перерабатывать освоенные научные методы и способы деятельности; 2. Способен предлагать концепции, модели, изобретать и апробировать способы и инструменты профессиональной деятельности; 3. Способен анализировать, верифицировать, оценивать полноту информации в ходе профессиональной деятельности, при необходимости восполнять и синтезировать недостающую информацию и работать в условиях неопределенности; 4. Способен вести профессиональную, в том числе научно-исследовательскую деятельность в международной среде; 5. Способен ставить задачу и принимать решение с учетом возможных рисков и последствий, разрабатывать соответствующие методические и нормативные документы, а также предложения и мероприятия по реализации разработанных проектов и программ; 6. Способен готовить аналитические материалы для оценки мероприятий в области экономической политики и принятия стратегических решений на микро- и макроуровне; 7. Способен находить данные, необходимые для анализа и проведения экономических расчетов, используя различные источники информации; 8. Способен работать с большими массивами разнообразной информации, составлять прогноз основных социально-экономических показателей деятельности предприятия, отрасли, региона и экономики в целом, в т. ч. используя современные информационно-компьютерные технологии.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знакомство с основными понятиями теории случайных процессов.
  • Понимает различие между стационарными и нестационарными рядами, умеет приводить ряды к стационарному виду.
  • Понимать к чему ведет наличие или отсутствие коинтеграции нестационарных временных рядов. Уметь переписать ARDL-модели в ECM форме.
  • Умеет оценивать коэффициенты моделей ARMA.
  • Умеет построить как точечный, так и интервальный прогноз по модели ARMA.
  • Умеет проводить тесты на наличие экзогенных и эндогенных структурных сдвигов.
  • Умеет различать процессы ARMA(p,q) и рассчитывать их характеристики
  • Умеет тестировать коинтеграцию многих временных рядов и строить многомерные модели как стационарных, так и нестационарных временных рядов.
  • Умеет тестировать наличие единичного корня, понимает особенности распределения тестовой статистики.
  • Умеет тестировать тип нестационарнности.
  • Уметь оценивать VAR-модели и проверять их стационарность.
  • Уметь оценивать модели с условной гетероскедастичностью.
  • Уметь строить многомерные модели условной гетероскедастичности
  • Уметь тестировать три типа экзогенности.
  • Прогнозировать временные ряды
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Временной ряд, как дискретный случайный процесс. Стационарность случайных процессов.
  • Модели авторегрессии-скользящего среднего ARMA (р, q). Автокорреляционные и частные автокорреляционные функции.
  • Оценивание коэффициентов процессов ARMA (p, q). Информационные критерии.
  • Прогнозирование в модели Бокса-Дженкинса
  • Нестационарные временные ряды.. Подход Бокса-Дженкинса к определению степени интеграции временного ряда.
  • Тесты на единичные корни: тесты Дикки-Фуллера, Филлипса-Перрона, KPSS и др.
  • Единичные корни и структурные сдвиги: Тесты Перрона, Бай-Перрона и Зивота-Эндрюса.
  • Методика исследования типа нестационарности временного ряда TSP или DSP. Другие типы нестационарных процессов.
  • Авторегрессионные модели с распределенными лагами. Понятие экзогенности (слабой, сильной, супер–). Причинность по Грэнджеру.
  • Коинтеграция временных рядов. Модели коррекции ошибками.
  • Многомерные временные ряды. Структурная и приведенная формы многомерных моделей. Модели векторной авторегрессии (VAR). Стационарность VAR-моделей. Оценивание коэффициентов VAR моделей. Тестирование VAR моделей.
  • 13. Тестирование коинтеграции. Тест Йохансена. Теорема Гренджера о представлении. Структурные модели векторной авторегрессии (SVAR).
  • 15. Нелинейные модели временных рядов: ARCH, GARCH и др.
  • 16. Многомерные модели условной гетероскедастичности.
  • Прогнозирование временных рядов
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа
    Контрольная работа по итогам 1 модуля изучения дисциплины
  • неблокирующий Экзамен
  • неблокирующий Проект 1
  • неблокирующий Проект 2
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 4th module
    0.3 * Контрольная работа + 0.2 * Проект 1 + 0.2 * Проект 2 + 0.3 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Applied econometric time series, Enders, W., 2015
  • Multivariate time series analysis : with R and financial applications, Tsay, R. S., 2014
  • Канторович Г.Г. (2002). Лекции: Анализ Временных Рядов. Higher School of Economics Economic Journal Экономический Журнал Высшей Школы Экономики, (1), 85. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.a.scn.025886.16537823
  • Канторович Г.Г. (2002). Лекции: Анализ временных рядов. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.69D6F004
  • Канторович Г.Г. (2002). Лекции: Анализ временных рядов. Экономический Журнал Высшей Школы Экономики, (1). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsclk&AN=edsclk.16537823
  • Канторович, Г. (2002). Лекции: Анализ Временных Рядов. Экономический Журнал Высшей Школы Экономики, (3). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsclk&AN=edsclk.15693389
  • Путеводитель по современной эконометрике : учеб.- метод. пособие для вузов, Вербик, М., 2008

Рекомендуемая дополнительная литература

  • Time series analysis, Hamilton, J. D., 1994

Авторы

  • Ужегов Алексей Александрович