• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Публикации (2021–2024 гг.)

2024

On Generalization of Lipschitz Groups and Spin Groups

E. R. Filimoshina, D. S. Shirokov, “On Generalization of Lipschitz Groups and Spin Groups”, Mathematical Methods in the Applied Sciences, 47(3), 1375–1400, 2024 (Список журналов А, WoS Q1), arXiv: 2205.06045.

On SVD and Polar Decomposition in Real and Complexified Clifford Algebras

D. S. Shirokov, “On SVD and Polar Decomposition in Real and Complexified Clifford Algebras”, Advances in Applied Clifford Algebras, 34 (2024), 23, 20 pp., arXiv: 2404.11920

Класс полевых уравнений для нейтрино с ненулевой массой

Н. Г. Марчук, “Класс полевых уравнений для нейтрино с ненулевой массой”, ТМФ, 219:3 (2024), 422–439.

On Some Lie Groups in Degenerate Geometric Algebras

E. R. Filimoshina, D. S. Shirokov, “On Some Lie Groups in Degenerate Geometric Algebras”, ICACGA 2022. Lecture Notes in Computer Science, 13771, Springer, Cham, 2024, 186–198.

A Note on Centralizers and Twisted Centralizers in Clifford Algebras

E. R. Filimoshina, D. S. Shirokov, “A Note on Centralizers and Twisted Centralizers in Clifford Algebras”. Adv. Appl. Clifford Algebras, 34:50, 2024, arXiv: 2404.15169

On Singular Value Decomposition and Polar Decomposition in Geometric Algebras

D. S. Shirokov, “On Singular Value Decomposition and Polar Decomposition in Geometric Algebras”, Advances in Computer Graphics. CGI 2023. Lecture Notes in Computer Science, 14498, Springer, Cham, 2024, 391–401.

Noncommutative Vieta Theorem in Clifford Geometric Algebras

D. S. Shirokov, “Noncommutative Vieta Theorem in Clifford Geometric Algebras”, Mathematical Methods in the Applied Sciences, 47(14), 2024, 11305–11320, arXiv: 2301.06848

2023

On Some Lie Groups in Degenerate Clifford Geometric Algebras

E. R. Filimoshina, D. S. Shirokov, "On Some Lie Groups in Degenerate Clifford Geometric Algebras", Advances in Applied Clifford Algebras, 33 (2023), 44, 29 pp. (Список журналов C, WoS Q2), arXiv: 2301.06842

Classification of All Constant Solutions of SU(2) Yang–Mills Equations with Arbitrary Current in Pseudo-Euclidean Space R^{p,q}

D. S. Shirokov, “Classification of All Constant Solutions of SU(2) Yang–Mills Equations with Arbitrary Current in Pseudo-Euclidean Space Rp,q”, Modern Physics Letters A, 38:20n21 (2023), 2350096 , 54 pp., arXiv: 1912.04996

On Noncommutative Vieta Theorem in Geometric Algebras

D. S. Shirokov, “On Noncommutative Vieta Theorem in Geometric Algebras”, Empowering Novel Geometric Algebra for Graphics and Engineering. ENGAGE 2022. Lecture Notes in Computer Science, 13862, Springer, Cham, 2023, 28–37

Уравнения теории поля и алгебры Клиффорда

Н. Г. Марчук, Уравнения теории поля и алгебры Клиффорда, Изд. 2, расш. и доп., Издательская группа URSS, Москва, 2023 , 344 с.

Development of the Method of Averaging in Clifford Geometric Algebras

D. S. Shirokov, “Development of the Method of Averaging in Clifford Geometric Algebras”, Mathematics, 11:16 (2023), 3607 , 18 pp., arXiv: 1409.8163

2022

Basis-free Formulas for Characteristic Polynomial Coefficients in Geometric Algebras

K. S. Abdulkhaev, D. S. Shirokov, “Basis-free Formulas for Characteristic Polynomial Coefficients in Geometric Algebras”, Advances in Applied Clifford Algebras, 32 (2022), 57, 27 pp. (Список журналов C, WoS Q2), arXiv: 2205.13449.

Гиперболическое сингулярное разложение при исследовании уравнений Янга–Миллса и Янга–Миллса–Прока

Д. С. Широков, “Гиперболическое сингулярное разложение при исследовании уравнений Янга–Миллса и Янга–Миллса–Прока”, Ж. вычисл. матем. и матем. физ., 62:6 (2022), 1042–1055

2021

On Explicit Formulas for Characteristic Polynomial Coefficients in Geometric Algebras

K. S. Abdulkhaev, D. S. Shirokov, “On Explicit Formulas for Characteristic Polynomial Coefficients in Geometric Algebras”, Advances in Computer Graphics. CGI 2021. Lecture Notes in Computer Science, 13002, eds. N. Magnenat-Thalmann et al., Springer, Cham, 2021, 670–681.

A Note on Subspaces of Fixed Grades in Clifford Algebras

D. S. Shirokov, “A Note on Subspaces of Fixed Grades in Clifford Algebras”, AIP Conference Proceedings, ISBN: 978-0-7354-4072-2 (Yakutsk, Russia, July 27 - August 1, ICMM-2020), 2328, AIP Publishing, 2021, 060001.

On Solutions of the Yang-Mills Equations in the Algebra of h-forms

D. S. Shirokov, “On Solutions of the Yang-Mills Equations in the Algebra of h-forms”, Journal of Physics: Conference Series (International Conference «Marchuk Scientific Readings 2021» (MSR-2021) 4-8 October 2021, Novosibirsk, Russian Federation), 2099, IOP Publishing, 2021, 012015.

On Inner Automorphisms Preserving Fixed Subspaces of Clifford Algebras

D. S. Shirokov, “On Inner Automorphisms Preserving Fixed Subspaces of Clifford Algebras”, Advances in Applied Clifford Algebras, 31 (2021), 30 , 23 pp., arXiv: 2011.08287

On Computing the Determinant, Other Characteristic Polynomial Coefficients, and Inverse in Clifford Algebras of Arbitrary Dimension

D. S. Shirokov, “On Computing the Determinant, Other Characteristic Polynomial Coefficients, and Inverse in Clifford Algebras of Arbitrary Dimension”, Computational and Applied Mathematics, 40 (2021), 173, 29 pp., arXiv: 2005.04015

Sketch of a Gauge Model of Gravity with SU(2) Symmetry in Minkowski Space

Nikolay Marchuk, “Sketch of a Gauge Model of Gravity with SU(2) Symmetry in Minkowski Space”, Adv. Appl. Clifford Algebr., 31 (2021), 75 , 14 pp.

A Note on the Hyperbolic Singular Value Decomposition without Hyperexchange Matrices

D. S. Shirokov, “A Note on the Hyperbolic Singular Value Decomposition without Hyperexchange Matrices”, Journal of Computational and Applied Mathematics, 391 (2021), 113450 , arXiv: 1812.02460

Basis-free Solution to Sylvester Equation in Clifford Algebra of Arbitrary Dimension

D. S. Shirokov, “Basis-free Solution to Sylvester Equation in Clifford Algebra of Arbitrary Dimension”, Advances in Applied Clifford Algebras, 31 (2021), 70, 19 pp., arXiv: 2109.01816


 

Нашли опечатку?
Выделите её, нажмите Ctrl+Enter и отправьте нам уведомление. Спасибо за участие!
Сервис предназначен только для отправки сообщений об орфографических и пунктуационных ошибках.