Семинар Лаборатории
Одной из важных проблем, возникающих при оценке многомерных моделей волатильности, является проблема размерности, которая выражается в квадратичном (или более быстром) росте числа оцениваемых параметров относительно числа исследуемых активов.
Примерами служат модели VEC (Bollerslev et al., 1989), CCC (Bollerslev, 1990), BEKK (Engle, Kroner, 1995), DCC (Engle, 2002), стохастическая волатильность (Harvey, 1994), SV-LSE (Asai, McAleer, 2006), стохастическая волатильность с динамическими корреляциями (MSV DCC, (Asai, McAleer, 2009). Введение пространственных матриц в уравнение волатильности позволяет устранить проблему размерности. Применение пространственных матриц для многомерных GARCH было предложено в (Caporin, Paruolo, 2015) и позволило снизить скорость роста числа параметров до линейного.
В докладе была освещена проблема размерности в многомерных моделях волатильности, а именно GARCH и стохастической волатильности; рассказано о пространственных матрицах и их применении в многомерных GARCH; изложены результаты внутривыборочного и вневыборочного сравнений пространственных и непространственных спецификаций трёх GARCH моделей; предложена многомерная модель стохастической волатильности с пространственными матрицами.