• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Contacts

109028, Moscow
11 Pokrovsky Boulevard,
Room Т-614
Phone: (495) 628-83-68

email: fes@hse.ru 

Administration
First Deputy Dean Sergey Merzlyakov
Deputy Dean for Academic Work Elena Pokatovich
Deputy Dean for Research Dmitry A. Veselov
Deputy Dean for International Affairs Liudmila S. Zasimova
Deputy Dean for Undergraduate Studies Elena Burmistrova
Events
Jan 22 2025 – Mar 1 2025
online 
Book
Systemic Financial Risk

Karminsky A. M., Столбов М. И.

Springer Publishing Company, 2024.

Book chapter
Comparative Analysis of the Quality of Linear Regression on Principal Components Constructed by Robust and Classical Methods

Goryainova E. R., Goryainov V. B.

In bk.: 2024 17th International Conference on Management of Large-Scale System Development (MLSD). IEEE, 2024. P. 1-5.

Working paper
Scoring and Favoritism in Optimal Procurement Design

Andreyanov P., Krasikov I., Suzdaltsev A.

arxiv.org. Theoretical Economics. Cornell University, 2024

Herve Moulin: Fair Division and Counterfactual-proofness

Herve Moulin, Donald J. Robertson Chair of Economics at the Adam Smith Business School at the University of Glasgow gave a talk at the International Laboratory of Decision Choice and Analysis research seminar on the topic of "Fair Division and Counterfactual-proofness"


Herve Moulin was presenting his findings on his most recent research.

Dividing valuable objects must often take place without cash changing hands: think of family heirlooms among siblings, shifts among interchangeable workers, seats in overbooked classes to students, or computing resources in peer-to-peer platforms.


We assume additive utilities, and that we can divide a limited number of objects, by time-sharing or randomization. The two prominent microeconomic solutions are the Relative Equivalent (REG) solution, and the Nash MaxProduct NMP) (aka the Competitive Equilibrium with Equal Incomes (CEEI) solution, or the Proportionally fair division). With three or more participants, NMP outperforms REG: unlike the latter, NMP meets the No Envy property and all agents benefit from the addition of new objects; and NMP is often “integral” (does not divide any object).

Moreover the NMP rule induces truthful reports if preference about objects an agent receives are verifiable ex post, so that misreporting affects only the objects lost to this agent. Together with Efficiency, Symmetry and Scale Invariance, this Counterfactual-proofness property characterizes the NMP rule.

The talk was attended by HSE faculty and students.